Sequential loss of myelin proteins during Wallerian degeneration in the rat spinal cord

被引:68
作者
Buss, A
Schwab, ME
机构
[1] ETH, Dept Biol, Zurich, Switzerland
[2] Univ Zurich, Brain Res Inst, Zurich, Switzerland
关键词
myelin associated glycoprotein; Nogo; neurofilament; astrocyte; macrophage;
D O I
10.1002/glia.10220
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
Axotomy of nerve fibers leads to the subsequent degeneration of their distal part, a process termed Wallerian degeneration (WD). While WD in the peripheral nervous system is usually followed by regeneration of the lesioned axons, central nervous system (CNS) neurons are generally unable to regrow: In this study, we investigated the process of WD in the dorsal columns of the rat spinal cord rostral to a mid-thoracic lesion. We confirm earlier studies describing a very delayed microglial and an early and sustained astroglial reaction finally leading to scar formation. Interestingly, we found a differential time course in the loss of myelin proteins depending on their location. Proteins situated on the periaxonal myelin membrane such as myelin associated glycoprotein disappeared early, within a few days after lesion, concomitantly with cytoskeletal axonal proteins, whereas compact myelin and outer myelin membrane proteins such as MBP and Nogo-A remained for long intervals in the degenerating tracts. Two distinct mechanisms are probably responsible for this difference: processes of protein destruction emanating from and initially probably located in the axon act on a time scale of 1-3 days. In contrast, the bulk of myelin destruction is due to phagocytosis known to be slow, prolonged, and inefficient, in the CNS. These results may also have implications for future intervention strategies aiming at enhancing CNS regeneration. (C) 2003 Wiley-Liss, Inc.
引用
收藏
页码:424 / 432
页数:9
相关论文
共 37 条
[1]   Central neuron-glial and glial-glial interactions following axon injury [J].
Aldskogius, H ;
Kozlova, EN .
PROGRESS IN NEUROBIOLOGY, 1998, 55 (01) :1-26
[2]   Pathogenesis and pharmacological strategies for mitigating secondary damage in acute spinal cord injury [J].
Amar, AP ;
Levy, ML .
NEUROSURGERY, 1999, 44 (05) :1027-1039
[3]   DIFFERENTIAL MACROPHAGE RESPONSES IN THE PERIPHERAL AND CENTRAL-NERVOUS-SYSTEM DURING WALLERIAN DEGENERATION OF AXONS [J].
AVELLINO, AM ;
HART, D ;
DAILEY, AT ;
MACKINNON, M ;
ELLEGALA, D ;
KLIOT, M .
EXPERIMENTAL NEUROLOGY, 1995, 136 (02) :183-198
[4]   Lack of evidence that myelin-associated glycoprotein is a major inhibitor of axonal regeneration in the CNS [J].
Bartsch, U ;
Bandtlow, CE ;
Schnell, L ;
Bartsch, S ;
Spillmann, AA ;
Rubin, BP ;
Hillenbrand, R ;
Montag, D ;
Schwab, ME ;
Schachner, M .
NEURON, 1995, 15 (06) :1375-1381
[5]   The role of macrophages in Wallerian degeneration [J].
Bruck, W .
BRAIN PATHOLOGY, 1997, 7 (02) :741-752
[6]   Nogo-A is a myelin-associated neurite outgrowth inhibitor and an antigen for monoclonal antibody IN-1 [J].
Chen, MS ;
Huber, AB ;
van der Haar, ME ;
Frank, M ;
Schnell, L ;
Spillmann, AA ;
Christ, F ;
Schwab, ME .
NATURE, 2000, 403 (6768) :434-439
[7]   Axon pathology in neurological disease: a neglected therapeutic target [J].
Coleman, MP ;
Perry, VH .
TRENDS IN NEUROSCIENCES, 2002, 25 (10) :532-537
[8]   Apoptosis and delayed degeneration after spinal cord injury in rats and monkeys [J].
Crowe, MJ ;
Bresnahan, JC ;
Shuman, SL ;
Masters, JN ;
Beattie, MS .
NATURE MEDICINE, 1997, 3 (01) :73-76
[9]   SECONDARY CELL-DEATH AND THE INFLAMMATORY REACTION AFTER DORSAL HEMISECTION OF THE RAT SPINAL-CORD [J].
DUSART, I ;
SCHWAB, ME .
EUROPEAN JOURNAL OF NEUROSCIENCE, 1994, 6 (05) :712-724
[10]   MYELIN BREAKDOWN AND ELIMINATION IN THE POSTERIOR FUNICULUS OF THE ADULT CAT AFTER DORSAL RHIZOTOMY - A LIGHT AND ELECTRON-MICROSCOPIC QUALITATIVE AND QUANTITATIVE STUDY [J].
FRANSON, P ;
RONNEVI, LO .
JOURNAL OF COMPARATIVE NEUROLOGY, 1984, 223 (01) :138-151