Dynamics of haem oxygenase-1 expression and bilirubin production in cellular protection against oxidative stress

被引:288
作者
Clark, JE
Foresti, R
Green, CJ
Motterlini, R [1 ]
机构
[1] Northwick Pk Inst Med Res, Dept Surg Res, Harrow HA1 3UJ, Middx, England
[2] Mt Vernon Hosp, RAFT Inst Plast Surg, Vasc Biol Unit, Northwood HA6 2RN, Middx, England
关键词
carbon monoxide; glucose oxidase; hydrogen peroxide; smooth-muscle cells; tin protoporphyrin IX;
D O I
10.1042/0264-6021:3480615
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The inducible isoform of haem oxygenase (HO-1) has been proposed as an effective system to counteract oxidant-induced cell injury. In several circumstances, this cytoprotective effect has been attributed to increased generation of the antioxidant bilirubin during haem degradation by HO-1. However, a direct implication for HO-1-derived bilirubin in protection against oxidative stress remains to be established. In the present study, we examined the dynamics of HO-1 expression and bilirubin production after stimulation of vascular smooth-muscle cells with hemin, a potent inducer of the HO-1 gene. We found that hemin-mediated increase in HO-1 protein expression and haem oxygenase activity is associated with augmented bilirubin levels. The majority of bilirubin production occurred early after exposure of cells to hemin. Hemin pre-treatment also resulted in high resistance to cell injury caused by an oxidant-generating system. Interestingly, this protective effect was manifest only when cells were actively producing bilirubin as a consequence of increased haem availability and utilization by MO-1. Tin protoporphyrin IX, an inhibitor of haem oxygenase activity, significantly reduced bilirubin generation and reversed cellular protection afforded by hemin treatment. Furthermore, addition of bilirubin to the culture medium markedly reduced the cytotoxicity produced by oxidants. Our findings provide direct evidence that bilirubin generated after up-regulation of the HO-1 pathway is cytoprotective against oxidative stress.
引用
收藏
页码:615 / 619
页数:5
相关论文
共 32 条
[1]   TRANSFECTION OF THE HUMAN HEME OXYGENASE GENE INTO RABBIT CORONARY MICROVESSEL ENDOTHELIAL-CELLS - PROTECTIVE EFFECT AGAINST HEME AND HEMOGLOBIN TOXICITY [J].
ABRAHAM, NG ;
LAVROVSKY, Y ;
SCHWARTZMAN, ML ;
STOLTZ, RA ;
LEVERE, RD ;
GERRITSEN, ME ;
SHIBAHARA, S ;
KAPPAS, A .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1995, 92 (15) :6798-6802
[2]   The biological significance and physiological role of heme oxygenase [J].
Abraham, NG ;
Drummond, GS ;
Lutton, JD ;
Kappas, A .
CELLULAR PHYSIOLOGY AND BIOCHEMISTRY, 1996, 6 (03) :129-168
[3]  
APPLEGATE LA, 1991, CANCER RES, V51, P974
[4]  
BALLA G, 1990, J LAB CLIN MED, V116, P546
[5]  
BALLA G, 1992, J BIOL CHEM, V267, P18148
[6]   ENDOTHELIAL-CELL HEME UPTAKE FROM HEME-PROTEINS - INDUCTION OF SENSITIZATION AND DESENSITIZATION TO OXIDANT DAMAGE [J].
BALLA, J ;
JACOB, HS ;
BALLA, G ;
NATH, K ;
EATON, JW ;
VERCELLOTTI, GM .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1993, 90 (20) :9285-9289
[7]   Stress (heat shock) proteins - Molecular chaperones in cardiovascular biology and disease [J].
Benjamin, IJ ;
McMillan, DR .
CIRCULATION RESEARCH, 1998, 83 (02) :117-132
[8]   Nitric oxide donor prevents hydrogen peroxide-mediated endothelial cell injury [J].
Chang, J ;
Rao, NV ;
Markewitz, BA ;
Hoidal, JR ;
Michael, JR .
AMERICAN JOURNAL OF PHYSIOLOGY-LUNG CELLULAR AND MOLECULAR PHYSIOLOGY, 1996, 270 (06) :L931-L940
[9]   Heme oxygenase-1: Function, regulation, and implication of a novel stress-inducible protein in oxidant-induced lung injury [J].
Choi, AMK ;
Alam, J .
AMERICAN JOURNAL OF RESPIRATORY CELL AND MOLECULAR BIOLOGY, 1996, 15 (01) :9-19
[10]   Involvement of the heme oxygenase carbon monoxide pathway in keratinocyte proliferation [J].
Clark, JE ;
Green, CJ ;
Motterlini, R .
BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS, 1997, 241 (02) :215-220