The alternative oxidase:: in vivo regulation and function

被引:202
作者
Millenaar, FF
Lambers, H
机构
[1] Univ Utrecht, NL-3584 CA Utrecht, Netherlands
[2] Univ Western Australia, Fac Nat & Agr Sci, Sch Plant Biol, Crawley, WA 6009, Australia
关键词
alternative oxidase; respiration; ubiquinone; oxygen free radicals; pyruvate;
D O I
10.1055/s-2003-37974
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
This review focuses on the biochemical regulation and function of the alternative oxidase in vivo. About 10 years ago, two activation mechanisms were discovered in isolated mitochondria, namely activation by reducing sulfur bonds in the protein and activation by an allosteric effect of pyruvate. it was proposed that plants would have a regulatory mechanism to modify alternative oxidase activity in vivo. However, more recent studies have shown that these two activation mechanisms may not play such an important role in regulation of alternative oxidase activity in vivo after all. Pyruvate and reduction of the sulfide bonds in the protein are definitely required for alternative oxidase activity, but they do not appear to be regulating the activity in vivo. Despite the energy wasting nature of the alternative oxidase, there was no obvious physiological function for the pathway for many years. It is now more clear that the alternative oxidase can prevent the production of excess reactive oxygen species radicals by stabilizing the redox state of the mitochondrial ubiquinone pool, while allowing continued activity of the citric acid cycle. This may be important under conditions when the NADH supply is relatively high (reductant overflow), or when the cytochrome pathway is restrained. The cytochrome pathway might be inhibited by naturally occurring cyanide, nitric oxide, sulfide, high concentrations of CO2, low temperatures, or by limited phosphate supply.
引用
收藏
页码:2 / 15
页数:14
相关论文
共 137 条
[1]   Control of plant mitochondrial respiration [J].
Affourtit, C ;
Krab, K ;
Moore, AL .
BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS, 2001, 1504 (01) :58-69
[2]   The internal rotenone-insensitive NADPH dehydrogenase contributes to malate oxidation by potato tuber and pea leaf mitochondria [J].
Agius, SC ;
Bykova, NV ;
Igamberdiev, AU ;
Moller, IM .
PHYSIOLOGIA PLANTARUM, 1998, 104 (03) :329-336
[3]   A revised model of the active site of alternative oxidase [J].
Andersson, ME ;
Nordlund, P .
FEBS LETTERS, 1999, 449 (01) :17-22
[4]  
ARP AJ, 1995, AM ZOOL, V35, P132
[5]  
BAHR JT, 1973, J BIOL CHEM, V248, P3446
[6]   Mitochondrial nitric oxide synthase: A ubiquitous regulator of oxidative phosphorylation? [J].
Bates, TE ;
Loesch, A ;
Burnstock, G ;
Clark, JB .
BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS, 1996, 218 (01) :40-44
[7]   New insight into the structure and function of the alternative oxidase [J].
Berthold, DA ;
Andersson, ME ;
Nordlund, P .
BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS, 2000, 1460 (2-3) :241-254
[8]   INSENSITIVITY TO ETHYLENE CONFERRED BY A DOMINANT MUTATION IN ARABIDOPSIS-THALIANA [J].
BLEECKER, AB ;
ESTELLE, MA ;
SOMERVILLE, C ;
KENDE, H .
SCIENCE, 1988, 241 (4869) :1086-1089
[9]   Rapid reduction of nitric oxide by mitochondria, and reversible inhibition of mitochondrial respiration by nitric oxide [J].
Borutaite, V ;
Brown, GC .
BIOCHEMICAL JOURNAL, 1996, 315 :295-299
[10]   Heat generation and dissipation in plants: Can the alternative oxidative phosphorylation pathway serve a thermoregulatory role in plant tissues other than specialized organs? [J].
Breidenbach, RW ;
Saxton, MJ ;
Hansen, LD ;
Criddle, RS .
PLANT PHYSIOLOGY, 1997, 114 (04) :1137-1140