Insights into the influence of fluorination positions on polymer donor materials on photovoltaic performance

被引:3
作者
Gong, Xue [1 ]
Li, Guangwu [1 ]
Chen, Jianya [2 ]
Feng, Shiyu [1 ]
Ma, Danyang [3 ]
Hou, Ran [1 ]
Li, Cuihong [1 ]
Ma, Wei [2 ]
Bo, Zhishan [1 ]
机构
[1] Beijing Normal Univ, Coll Chem, Beijing Key Lab Energy Convers & Storage Mat, Beijing 100875, Peoples R China
[2] Xi An Jiao Tong Univ, State Key Lab Mech Behav Mat, Xian 710049, Peoples R China
[3] Beijing Univ Chem Technol, State Key Lab Chem Resource Engn, Beijing 100029, Peoples R China
基金
北京市自然科学基金;
关键词
Polymer solar cells; Fluorination position and number; Morphology; ORGANIC SOLAR-CELLS; BAND-GAP POLYMERS; MOLECULAR-ENERGY LEVEL; CONJUGATED POLYMERS; HIGH-EFFICIENCY; DESIGN; BENZODITHIOPHENE; MODULATION; MORPHOLOGY;
D O I
10.1016/j.orgel.2017.04.009
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
To explore the influence of fluoro substitution position and number on optical, electrochemical and photovoltaic properties, three novel donor-acceptor (D-A) alternative copolymers (PHF, PFH and PFF) were synthesized by Stille polycondensation of 2,3-diphenyl-5,8-di(thiophen-2-yl) quinoxaline (DTQx) acceptor unit and indacenodithiophene (IDT) donor unit. As films, PHF and PFF comprising two fluoro substituents on the lateral phenyl groups displayed a broad absorption ranging from 350 to 700 nm; whereas PFH containing two fluorine atoms on the polymer main chain exhibited a slightly narrower absorption ranging from 350 to 650 nm. In addition, fluoro substitution on the polymer main chain can lower the HOMO level of the resulted polymers. As expected, PFH and PFF possess deeper HOMO energy level than PHF. Polymer solar cells (PSCs) were fabricated with these three polymers as donor materials and PC71BM as acceptor material. PHF based PSCs gave a power conversion efficiency (PCE) of 7.2% with a V-oc of 0.84 V, a J(sc) of 12.46 mA/cm(2) and an FF of 0.69. And PFH based PSCs showed a PCE of 6.19% with a V-oc of 0.93 V, a J(sc) of 9.57 mA/cm(2) and an FF 0.70. However, a PCE of only 2.9% with a Voc of 0.92 V, a Jsc of 4.61 mA/cm(2) and an FF of 0.68 was obtained for PFF based PSCs. Transmission electron microscopy (TEM) and resonant soft X-ray scattering (R-SoXS) studies indicated that the introduction of four fluorine atoms at each repeating unit can spoil the morphology of active layer. These results highlight the importance of fluorination position and number to the performance of PSCs. (C) 2017 Published by Elsevier B.V.
引用
收藏
页码:115 / 120
页数:6
相关论文
共 48 条
[1]   Recent progress in the design of narrow bandgap conjugated polymers for high-efficiency organic solar cells [J].
Bian, Linyi ;
Zhu, Enwei ;
Tang, Jian ;
Tang, Weihua ;
Zhang, Fujun .
PROGRESS IN POLYMER SCIENCE, 2012, 37 (09) :1292-1331
[2]   Low band gap polymers for organic photovoltaics [J].
Bundgaard, Eva ;
Krebs, Frederik C. .
SOLAR ENERGY MATERIALS AND SOLAR CELLS, 2007, 91 (11) :954-985
[3]   Molecular Design and Morphology Control Towards Efficient Polymer Solar Cells Processed using Non-aromatic and Non-chlorinated Solvents [J].
Chen, Yu ;
Zhang, Shaoqing ;
Wu, Yue ;
Hou, Jianhui .
ADVANCED MATERIALS, 2014, 26 (17) :2744-2749
[4]   Synthesis of Conjugated Polymers for Organic Solar Cell Applications [J].
Cheng, Yen-Ju ;
Yang, Sheng-Hsiung ;
Hsu, Chain-Shu .
CHEMICAL REVIEWS, 2009, 109 (11) :5868-5923
[5]   High-performance polymer solar cells based on a 2D-conjugated polymer with an alkylthio side-chain [J].
Cui, Chaohua ;
He, Zhicai ;
Wu, Yue ;
Cheng, Xiao ;
Wu, Hongbin ;
Li, Yongfang ;
Cao, Yong ;
Wong, Wai-Yeung .
ENERGY & ENVIRONMENTAL SCIENCE, 2016, 9 (03) :885-891
[6]   Improvement of open-circuit voltage and photovoltaic properties of 2D-conjugated polymers by alkylthio substitution [J].
Cui, Chaohua ;
Wong, Wai-Yeung ;
Li, Yongfang .
ENERGY & ENVIRONMENTAL SCIENCE, 2014, 7 (07) :2276-2284
[7]   Fused Nonacyclic Electron Acceptors for Efficient Polymer Solar Cells [J].
Dai, Shuixing ;
Zhao, Fuwen ;
Zhang, Qianqian ;
Lau, Tsz-Ki ;
Li, Tengfei ;
Liu, Kuan ;
Ling, Qidan ;
Wang, Chunru ;
Lu, Xinhui ;
You, Wei ;
Zhan, Xiaowei .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2017, 139 (03) :1336-1343
[8]   Recent development of push-pull conjugated polymers for bulk-heterojunction photovoltaics: rational design and fine tailoring of molecular structures [J].
Duan, Chunhui ;
Huang, Fei ;
Cao, Yong .
JOURNAL OF MATERIALS CHEMISTRY, 2012, 22 (21) :10416-10434
[9]   Conjugated polymer-based organic solar cells [J].
Guenes, Serap ;
Neugebauer, Helmut ;
Sariciftci, Niyazi Serdar .
CHEMICAL REVIEWS, 2007, 107 (04) :1324-1338
[10]  
He ZC, 2015, NAT PHOTONICS, V9, P174, DOI [10.1038/NPHOTON.2015.6, 10.1038/nphoton.2015.6]