Axioms and uniqueness theorem for Tsallis entropy

被引:150
作者
Abe, S [1 ]
机构
[1] Nihon Univ, Coll Sci & Technol, Chiba 2748501, Japan
关键词
Number:; -; Acronym:; Sponsor: Nihon University;
D O I
10.1016/S0375-9601(00)00337-6
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The Shannon-Khinchin axioms for the ordinary information entropy are generalized in a natural way to the nonextensive systems based on the concept of nonextensive conditional entropy and a complete proof of the uniqueness theorem for the Tsallis entropy is presented. This improves the discussion of dos Santos [J. Math Phys. 38 (1997) 4104]. (C) 2000 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:74 / 79
页数:6
相关论文
共 8 条
[1]  
ABE S, QUANTPH0001085
[2]  
Beck C., 1993, THERMODYNAMICS CHAOT
[3]  
Di Sisto RP, 1999, PHYSICA A, V265, P590, DOI 10.1016/S0378-4371(98)00561-5
[4]   Generalization of Shannon's theorem for Tsallis entropy [J].
dosSantos, RJV .
JOURNAL OF MATHEMATICAL PHYSICS, 1997, 38 (08) :4104-4107
[5]   Composability and generalized entropy [J].
Hotta, M ;
Joichi, I .
PHYSICS LETTERS A, 1999, 262 (4-5) :302-309
[6]  
KHINCHIN AI, 1957, MATH FDN INFORMATION
[7]   POSSIBLE GENERALIZATION OF BOLTZMANN-GIBBS STATISTICS [J].
TSALLIS, C .
JOURNAL OF STATISTICAL PHYSICS, 1988, 52 (1-2) :479-487
[8]  
Weaver W., 1963, MATH THEORY COMMUNIC