Mathematical framework for human SLE Nephritis: disease dynamics and urine biomarkers

被引:8
作者
Budu-Grajdeanu, Paula [2 ]
Schugart, Richard C. [3 ]
Friedman, Avner [1 ]
Birmingham, Daniel J. [4 ]
Rovin, Brad H. [4 ]
机构
[1] Ohio State Univ, Dept Math, Columbus, OH 43210 USA
[2] Ohio State Univ, Math Biosci Inst, Columbus, OH 43210 USA
[3] Western Kentucky Univ, Dept Math, Bowling Green, KY 42101 USA
[4] Ohio State Univ, Coll Med, Div Nephrol, Dept Internal Med, Columbus, OH 43210 USA
来源
THEORETICAL BIOLOGY AND MEDICAL MODELLING | 2010年 / 7卷
基金
美国国家科学基金会;
关键词
SYSTEMIC-LUPUS-ERYTHEMATOSUS; ORGAN FAILURE; INFLAMMATION; CHEMOKINES;
D O I
10.1186/1742-4682-7-14
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
Background: Although the prognosis for Lupus Nephritis (LN) has dramatically improved with aggressive immunosuppressive therapies, these drugs carry significant side effects. To improve the effectiveness of these drugs, biomarkers of renal flare cycle could be used to detect the onset, severity, and responsiveness of kidney relapses, and to modify therapy accordingly. However, LN is a complex disease and individual biomarkers have so far not been sufficient to accurately describe disease activity. It has been postulated that biomarkers would be more informative if integrated into a pathogenic-based model of LN. Results: This work is a first attempt to integrate human LN biomarkers data into a model of kidney inflammation. Our approach is based on a system of differential equations that capture, in a simplified way, the complexity of interactions underlying disease activity. Using this model, we have been able to fit clinical urine biomarkers data from individual patients and estimate patient-specific parameters to reproduce disease dynamics, and to better understand disease mechanisms. Furthermore, our simulations suggest that the model can be used to evaluate therapeutic strategies for individual patients, or a group of patients that share similar data patterns. Conclusions: We show that effective combination of clinical data and physiologically based mathematical modeling may provide a basis for more comprehensive modeling and improved clinical care for LN patients.
引用
收藏
页数:20
相关论文
共 21 条
[1]   Interferon-Regulated Chemokines as Biomarkers of Systemic Lupus Erythematosus Disease Activity A Validation Study [J].
Bauer, Jason W. ;
Petri, Michelle ;
Batliwalla, Franak M. ;
Koeuth, Thearith ;
Wilson, Joseph ;
Slattery, Catherine ;
Panoskaltsis-Mortari, Angela ;
Gregersen, Peter K. ;
Behrens, Timothy W. ;
Baechler, Emily C. .
ARTHRITIS AND RHEUMATISM, 2009, 60 (10) :3098-3107
[2]   CR1 and CR1-like: the primate immune adherence receptors [J].
Birmingham, DJ ;
Hebert, LA .
IMMUNOLOGICAL REVIEWS, 2001, 180 :100-111
[3]  
Churg J., 1982, RENAL DIS CLASSIFICA, P127
[4]  
De Boer RJ., 2006, MODELING POPULATION
[5]  
DEBOER RJ, 2005, THEORETICAL BIOL
[6]   Why can't we find a new treatment for SLE? [J].
Eisenberg, Robert .
JOURNAL OF AUTOIMMUNITY, 2009, 32 (3-4) :223-230
[7]  
GORIS RJA, 1985, ARCH SURG-CHICAGO, V120, P1109
[8]  
HEBERT LA, 1991, AM J KIDNEY DIS, V17, P352
[9]   Dynamical properties of autoimmune disease models: Tolerance, flare-up, dormancy [J].
Iwami, Shingo ;
Takeuchi, Yasuhiro ;
Miura, Yoshiharu ;
Sasaki, Toru ;
Kajiwara, Tsuyoshi .
JOURNAL OF THEORETICAL BIOLOGY, 2007, 246 (04) :646-659
[10]  
Lewis EJ, 2001, J NEPHROL, V14, P223