Crystal structure of the MurG:UDP-GlcNAc complex reveals common structural principles of a superfamily of glycosyltransferases

被引:185
作者
Hu, YN [1 ]
Chen, L [1 ]
Ha, S [1 ]
Gross, B [1 ]
Falcone, B [1 ]
Walker, D [1 ]
Mokhtarzadeh, M [1 ]
Walker, S [1 ]
机构
[1] Princeton Univ, Dept Chem, Princeton, NJ 08540 USA
关键词
D O I
10.1073/pnas.0235749100
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
MurG is an essential glycosyltransferase that forms the glycosidic linkage between N-acetyl muramyl pentapeptide and N-acetyl glucosamine in the biosynthesis of the bacterial cell wall. This enzyme is a member of a major superfamily of NDP-glycosyltrans-ferases for which no x-ray structures containing intact substrates have been reported. Here we present the 2.5-Angstrom crystal structure of Escherichia coli MurG in complex with its donor substrate, UDPGlcNAc. Combined with genomic analysis of other superfamily members and site-specific mutagenesis of E. coli MurG, this structure sheds light on the molecular basis for both donor and acceptor selectivity for the superfamily. This structural analysis suggests that it will be possible to evolve new glycosyltransferases from prototypical superfamily members by varying two key loops while maintaining the overall architecture of the family and preserving key residues.
引用
收藏
页码:845 / 849
页数:5
相关论文
共 35 条
[1]   Identification of essential amino acids in the bacterial α-mannosyltransferase AceA [J].
Abdian, PL ;
Lellouch, AC ;
Gautier, C ;
Ielpi, L ;
Geremia, RA .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2000, 275 (51) :40568-40575
[2]   Glycoside hydrolases and glycosyltransferases: families and functional modules [J].
Bourne, Y ;
Henrissat, B .
CURRENT OPINION IN STRUCTURAL BIOLOGY, 2001, 11 (05) :593-600
[3]   Crystallography & NMR system:: A new software suite for macromolecular structure determination [J].
Brunger, AT ;
Adams, PD ;
Clore, GM ;
DeLano, WL ;
Gros, P ;
Grosse-Kunstleve, RW ;
Jiang, JS ;
Kuszewski, J ;
Nilges, M ;
Pannu, NS ;
Read, RJ ;
Rice, LM ;
Simonson, T ;
Warren, GL .
ACTA CRYSTALLOGRAPHICA SECTION D-BIOLOGICAL CRYSTALLOGRAPHY, 1998, 54 :905-921
[4]   A classification of nucleotide-diphospho-sugar glycosyltransferases based on amino acid sequence similarities [J].
Campbell, JA ;
Davies, GJ ;
Bulone, V ;
Henrissat, B .
BIOCHEMICAL JOURNAL, 1997, 326 :929-939
[5]   Structure of the nucleotide-diphospho-sugar transferase, SpsA from Bacillus subtilis, in native and nucleotide-complexed forms [J].
Charnock, SJ ;
Davies, GJ .
BIOCHEMISTRY, 1999, 38 (20) :6380-6385
[6]   Intrinsic lipid preferences and kinetic mechanism of Escherichia coli MurG [J].
Chen, L ;
Men, H ;
Ha, S ;
Ye, XY ;
Brunner, L ;
Hu, Y ;
Walker, S .
BIOCHEMISTRY, 2002, 41 (21) :6824-6833
[7]   The structural basis for induction of VanB resistance [J].
Dong, SD ;
Oberthür, M ;
Losey, HC ;
Anderson, JW ;
Eggert, US ;
Peczuh, MW ;
Walsh, CT ;
Kahne, D .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2002, 124 (31) :9064-9065
[8]   An extensively modified version of MolScript that includes greatly enhanced coloring capabilities [J].
Esnouf, RM .
JOURNAL OF MOLECULAR GRAPHICS & MODELLING, 1997, 15 (02) :132-+
[9]   Bovine α1,3-galactosyltransferase catalytic domain structure and its relationship with ABO histo-blood group and glycosphingolipid glycosyltransferases [J].
Gastinel, LN ;
Bignon, C ;
Misra, AK ;
Hindsgaul, O ;
Shaper, JH ;
Joziasse, DH .
EMBO JOURNAL, 2001, 20 (04) :638-649
[10]   Crystal structures of the bovine β4galactosyltransferase catalytic domain and its complex with uridine diphosphogalactose [J].
Gastinel, LN ;
Cambillau, C ;
Bourne, Y .
EMBO JOURNAL, 1999, 18 (13) :3546-3557