Associative memory Hamiltonians for structure prediction without homology:: α/β proteins

被引:46
作者
Hardin, C
Eastwood, MP
Prentiss, MC
Luthey-Schulten, Z
Wolynes, PG
机构
[1] Univ Illinois, Ctr Biophys & Computat Biol, Urbana, IL 61801 USA
[2] Univ Illinois, Sch Chem Sci, Urbana, IL 61801 USA
[3] Univ Calif San Diego, Dept Chem & Biochem, La Jolla, CA 92093 USA
关键词
D O I
10.1073/pnas.252753899
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
We describe a method for predicting the structure of alpha/beta class proteins in the absence of information from homologous structures. The method is based on an associative memory model for short to intermediate range in sequence contacts and a contact potential for long range in sequence contacts. The coefficients in the energy function are chosen to maximize the ratio of the folding temperature to the glass transition temperature. We use the resulting optimized model to predict the structure of three alpha/beta protein domains ranging in length from 81 to 115 residues. The resulting predictions align with low rms deviations to large portions of the native state. We have also calculated the free energy as a function of similarity to the native state for one of these three domains, and we show that, as expected from the optimization criteria, the free energy surface resembles a rough funnel to the native state. Finally, we briefly demonstrate the effect of roughness in the energy landscape on the dynamics.
引用
收藏
页码:1679 / 1684
页数:6
相关论文
共 32 条
[1]   Gapped BLAST and PSI-BLAST: a new generation of protein database search programs [J].
Altschul, SF ;
Madden, TL ;
Schaffer, AA ;
Zhang, JH ;
Zhang, Z ;
Miller, W ;
Lipman, DJ .
NUCLEIC ACIDS RESEARCH, 1997, 25 (17) :3389-3402
[2]   PRINCIPLES THAT GOVERN FOLDING OF PROTEIN CHAINS [J].
ANFINSEN, CB .
SCIENCE, 1973, 181 (4096) :223-230
[3]  
Betancourt MR, 2001, J COMPUT CHEM, V22, P339, DOI 10.1002/1096-987X(200102)22:3<339::AID-JCC1006>3.0.CO
[4]  
2-R
[5]   SPIN-GLASSES AND THE STATISTICAL-MECHANICS OF PROTEIN FOLDING [J].
BRYNGELSON, JD ;
WOLYNES, PG .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1987, 84 (21) :7524-7528
[6]  
Cuff JA, 1999, PROTEINS, V34, P508, DOI 10.1002/(SICI)1097-0134(19990301)34:4<508::AID-PROT10>3.0.CO
[7]  
2-4
[8]   Statistical mechanical refinement of protein structure prediction schemes: Cumulant expansion approach [J].
Eastwood, MP ;
Hardin, C ;
Luthey-Schulten, Z ;
Wolynes, PG .
JOURNAL OF CHEMICAL PHYSICS, 2002, 117 (09) :4602-4615
[9]   Evaluating protein structure-prediction schemes using energy landscape theory [J].
Eastwood, MP ;
Hardin, C ;
Luthey-Schulten, Z ;
Wolynes, PG .
IBM JOURNAL OF RESEARCH AND DEVELOPMENT, 2001, 45 (3-4) :475-497
[10]   OPTIMIZED MONTE-CARLO DATA-ANALYSIS [J].
FERRENBERG, AM ;
SWENDSEN, RH .
PHYSICAL REVIEW LETTERS, 1989, 63 (12) :1195-1198