Affine systems in L-2(R-d) .2. Dual systems

被引:207
作者
Ron, A [1 ]
Shen, ZW [1 ]
机构
[1] NATL UNIV SINGAPORE, DEPT MATH, SINGAPORE 119260, SINGAPORE
关键词
affine systems; affine product; quasi-affine systems; frames; dual frames; multiresolution analysis; wavelets;
D O I
10.1007/BF02648888
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The fiberization of affine systems via dual Gramian techniques, which was developed in previous papers of the authors, is applied here for the study of affine frames that have an affine dual system. Gramian techniques are also used to verify whether a dual pair of affine frames is also a pair of bi-orthogonal Riesz bases. A general method for a painless derivation of a dual pair of affine frames from an arbitrary MRA is obtained via the mixed extension principle.
引用
收藏
页码:617 / 637
页数:21
相关论文
共 21 条
[1]  
CHUI CK, 1996, AFFINE FRAMES QUASIA
[2]   BIORTHOGONAL BASES OF COMPACTLY SUPPORTED WAVELETS [J].
COHEN, A ;
DAUBECHIES, I ;
FEAUVEAU, JC .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1992, 45 (05) :485-560
[3]   THE WAVELET TRANSFORM, TIME-FREQUENCY LOCALIZATION AND SIGNAL ANALYSIS [J].
DAUBECHIES, I .
IEEE TRANSACTIONS ON INFORMATION THEORY, 1990, 36 (05) :961-1005
[4]  
DAUBECHIES I, 1992, CBMF C SER APPL MATH, V61
[5]  
Daubechies I., 1995, J FOURIER ANAL APPL, V1, P437, DOI [DOI 10.1007/S00041-001-4018-3, 10.1007/s00041-001-4018-30, 10.1007/s00041-001-4018-3]
[6]   APPROXIMATION FROM SHIFT-INVARIANT SUBSPACES OF L(2(R(D)) [J].
DEBOOR, C ;
DEVORE, RA ;
RON, A .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1994, 341 (02) :787-806
[7]   ON THE CONSTRUCTION OF MULTIVARIATE (PRE)WAVELETS [J].
DEBOOR, C ;
DEVORE, RA ;
RON, A .
CONSTRUCTIVE APPROXIMATION, 1993, 9 (2-3) :123-166
[8]  
GROCHENIG K, IN PRESS P AM MATH S
[9]  
HAN B, 1995, UNPUB DUAL WAVELET T
[10]  
Janssen A. J. E. M., 1995, J. Fourier Anal. Appl., V1, P403, DOI 10.1007/s00041-001-4017-4