Computational model for transport in nanotube-based composites with applications to flexible electronics

被引:28
作者
Kumar, Satish
Alam, Muhammad A.
Murthy, Jayathi Y.
机构
[1] Purdue Univ, Sch Mech Engn, W Lafayette, IN 47907 USA
[2] Purdue Univ, Sch Elect & Comp Engn, W Lafayette, IN 47907 USA
来源
JOURNAL OF HEAT TRANSFER-TRANSACTIONS OF THE ASME | 2007年 / 129卷 / 04期
关键词
nanotube; thin film transistor; nanocomposite; percolation;
D O I
10.1115/1.2709969
中图分类号
O414.1 [热力学];
学科分类号
摘要
Thermal and electrical transport in a new class of nanocomposites composed of random isotropic two-dimensional ensembles of nanotubes or nanowires in a substrate (host matrix) is considered for use in the channel region of thin-film transistors (TFTs). The random ensemble of nanotubes is generated numerically and each nanotube is discretized using a finite volume scheme. To simulate transport in composites, the network is embedded in a background substrate mesh, which is also discretized using a finite volume scheme. Energy and charge exchange between nanotubes at the points of contact and between the network and the substrate are accounted for. A variety of test problems are computed for both network transport in the absence of a substrate, as well as for determination of lateral thermal and electrical conductivity in composites. For nanotube networks in the absence of a substrate, the conductance exponent relating the network conductance to the channel length is computed and found to match experimental electrical measurements. The effective thermal conductivity of a nanotube network embedded in a thin substrate is computed for a range of substrate-to-tube conductivity ratios. It is observed that the effective thermal conductivity of the composite saturates to a size-independent value for large enough samples, establishing the limits beyond which bulk behavior obtains. The effective electrical conductivity of carbon nanotube-organic thin films used in organic TFTs is computed and is observed to be in good agreement with the experimental results.
引用
收藏
页码:500 / 508
页数:9
相关论文
共 37 条
[1]  
[Anonymous], 1980, SERIES COMPUTATIONAL, DOI [DOI 10.1201/9781482234213, 10.1201/9781482234213]
[2]  
BIEURCK MJ, 2002, APPL PHYS LETT, V80, P2767
[3]   Carbon nanotubes-semiconductor networks for organic electronics: The pickup stick transistor [J].
Bo, XZ ;
Lee, CY ;
Strano, MS ;
Goldfinger, M ;
Nuckolls, C ;
Blanchet, GB .
APPLIED PHYSICS LETTERS, 2005, 86 (18) :1-3
[4]   Computer simulations for organic light-emitting diodes [J].
Curioni, A ;
Andreoni, W .
IBM JOURNAL OF RESEARCH AND DEVELOPMENT, 2001, 45 (01) :101-113
[5]   Organic thin-film transistors: A review of recent advances [J].
Dimitrakopoulos, CD ;
Mascaro, DJ .
IBM JOURNAL OF RESEARCH AND DEVELOPMENT, 2001, 45 (01) :11-27
[6]   Phonons in carbon nanotubes [J].
Dresselhaus, MS ;
Eklund, PC .
ADVANCES IN PHYSICS, 2000, 49 (06) :705-814
[7]   High-performance thin-film transistors using semiconductor nanowires and nanoribbons [J].
Duan, XF ;
Niu, CM ;
Sahi, V ;
Chen, J ;
Parce, JW ;
Empedocles, S ;
Goldman, JL .
NATURE, 2003, 425 (6955) :274-278
[8]   Theoretical and computational studies of carbon nanotube composites and suspensions: Electrical and thermal conductivity [J].
Foygel, M ;
Morris, RD ;
Anez, D ;
French, S ;
Sobolev, VL .
PHYSICAL REVIEW B, 2005, 71 (10)
[9]   HIGHLY EFFICIENT ALGORITHM FOR PERCOLATIVE TRANSPORT STUDIES IN 2 DIMENSIONS [J].
FRANK, DJ ;
LOBB, CJ .
PHYSICAL REVIEW B, 1988, 37 (01) :302-307
[10]   EFFECTIVE THERMAL-CONDUCTIVITY OF COMPOSITES WITH INTERFACIAL THERMAL BARRIER RESISTANCE [J].
HASSELMAN, DPH ;
JOHNSON, LF .
JOURNAL OF COMPOSITE MATERIALS, 1987, 21 (06) :508-515