Arabidopsis Plants Acclimate to Water Deficit at Low Cost through Changes of Carbon Usage: An Integrated Perspective Using Growth, Metabolite, Enzyme, and Gene Expression Analysis

被引:350
作者
Hummel, Irene [1 ]
Pantin, Florent [1 ]
Sulpice, Ronan [2 ]
Piques, Maria [2 ]
Rolland, Gaelle [1 ]
Dauzat, Myriam [1 ]
Christophe, Angelique [1 ]
Pervent, Marjorie [1 ]
Bouteille, Marie [1 ]
Stitt, Mark [2 ]
Gibon, Yves [2 ]
Muller, Bertrand [1 ]
机构
[1] INRA, UMR 759, F-34060 Montpellier, France
[2] Max Planck Inst Mol Plant Physiol, D-14476 Golm, Germany
关键词
NITRATE REDUCTASE-ACTIVITY; HIGH-SALINITY STRESSES; DROUGHT-STRESS; LEAF GROWTH; MAIZE LEAF; CARBOHYDRATE-METABOLISM; STOMATAL CONDUCTANCE; OSMOTIC ADJUSTMENT; TRANSCRIPT LEVELS; STARCH TURNOVER;
D O I
10.1104/pp.110.157008
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
Growth and carbon (C) fluxes are severely altered in plants exposed to soil water deficit. Correspondingly, it has been suggested that plants under water deficit suffer from C shortage. In this study, we test this hypothesis in Arabidopsis (Arabidopsis thaliana) by providing an overview of the responses of growth, C balance, metabolites, enzymes of the central metabolism, and a set of sugar-responsive genes to a sustained soil water deficit. The results show that under drought, rosette relative expansion rate is decreased more than photosynthesis, leading to a more positive C balance, while root growth is promoted. Several soluble metabolites accumulate in response to soil water deficit, with K+ and organic acids as the main contributors to osmotic adjustment. Osmotic adjustment costs only a small percentage of the daily photosynthetic C fixation. All C metabolites measured (not only starch and sugars but also organic acids and amino acids) show a diurnal turnover that often increased under water deficit, suggesting that these metabolites are readily available for being metabolized in situ or exported to roots. On the basis of 30 enzyme activities, no in-depth reprogramming of C metabolism was observed. Water deficit induces a shift of the expression level of a set of sugar-responsive genes that is indicative of increased, rather than decreased, C availability. These results converge to show that the differential impact of soil water deficit on photosynthesis and rosette expansion results in an increased availability of C for the roots, an increased turnover of C metabolites, and a low-cost C-based osmotic adjustment, and these responses are performed without major reformatting of the primary metabolism machinery.
引用
收藏
页码:357 / 372
页数:16
相关论文
共 80 条
[1]   Plasticity to soil water deficit in Arabidopsis thaliana:: dissection of leaf development into underlying growth dynamic and cellular variables reveals invisible phenotypes [J].
Aguirrezabal, Luis ;
Bouchier-Combaud, Sandrine ;
Radziejwoski, Amandine ;
Dauzat, Myriam ;
Cookson, Sarah Jane ;
Granier, Christine .
PLANT CELL AND ENVIRONMENT, 2006, 29 (12) :2216-2227
[2]   Soluble invertase expression is an early target of drought stress during the critical, abortion-sensitive phase of young ovary development in maize [J].
Andersen, MN ;
Asch, F ;
Wu, Y ;
Jensen, CR ;
Næsted, H ;
Mogensen, VO ;
Koch, KE .
PLANT PHYSIOLOGY, 2002, 130 (02) :591-604
[3]   Multilevel Analysis of Primary Metabolism Provides New Insights into the Role of Potassium Nutrition for Glycolysis and Nitrogen Assimilation in Arabidopsis Roots [J].
Armengaud, Patrick ;
Sulpice, Ronan ;
Miller, Anthony J. ;
Stitt, Mark ;
Amtmann, Anna ;
Gibon, Yves .
PLANT PHYSIOLOGY, 2009, 150 (02) :772-785
[4]   Sugars and circadian regulation make major contributions to the global regulation of diurnal gene expression in Arabidopsis [J].
Bläsing, OE ;
Gibon, Y ;
Günther, M ;
Höhne, M ;
Morcuende, R ;
Osuna, D ;
Thimm, O ;
Usadel, B ;
Scheible, WR ;
Stitt, M .
PLANT CELL, 2005, 17 (12) :3257-3281
[5]   Gradual soil water depletion results in reversible changes of gene expression, protein profiles, ecophysiology, and growth performance in Populus euphratica, a poplar growing in arid regions [J].
Bogeat-Triboulot, Marie-Beatrice ;
Brosche, Mikael ;
Renaut, Jenny ;
Jouve, Laurent ;
Le Thiec, Didier ;
Fayyaz, Payam ;
Vinocur, Basia ;
Witters, Erwin ;
Laukens, Kris ;
Teichmann, Thomas ;
Altman, Arie ;
Hausman, Jean-Francois ;
Polle, Andrea ;
Kangasjarvi, Jaakko ;
Dreyer, Erwin .
PLANT PHYSIOLOGY, 2007, 143 (02) :876-892
[7]   Genes commonly regulated by water-deficit stress in Arabidopsis thaliana [J].
Bray, EA .
JOURNAL OF EXPERIMENTAL BOTANY, 2004, 55 (407) :2331-2341
[8]   ALTERATIONS IN GROWTH, PHOTOSYNTHESIS, AND RESPIRATION IN A STARCHLESS MUTANT OF ARABIDOPSIS-THALIANA (L) DEFICIENT IN CHLOROPLAST PHOSPHOGLUCOMUTASE ACTIVITY [J].
CASPAR, T ;
HUBER, SC ;
SOMERVILLE, C .
PLANT PHYSIOLOGY, 1985, 79 (01) :11-17
[9]   How plants cope with water stress in the field.: Photosynthesis and growth [J].
Chaves, MM ;
Pereira, JS ;
Maroco, J ;
Rodrigues, ML ;
Ricardo, CPP ;
Osório, ML ;
Carvalho, I ;
Faria, T ;
Pinheiro, C .
ANNALS OF BOTANY, 2002, 89 :907-916
[10]   Fumaric acid:: an overlooked form of fixed carbon in Arabidopsis and other plant species [J].
Chia, DW ;
Yoder, TJ ;
Reiter, WD ;
Gibson, SI .
PLANTA, 2000, 211 (05) :743-751