Additive splines for partial least squares regression

被引:19
作者
Durand, JF [1 ]
Sabatier, R
机构
[1] Univ Montpellier 2, Lab Probabil & Stat, F-34095 Montpellier 5, France
[2] INRA, ENSAM, UM 2, F-34060 Montpellier, France
[3] Fac Pharmacol Montpellier, Lab Struct & Mol Phys, Montpellier, France
关键词
data reduction; multiresponse additive models; partial least squares; regression splines;
D O I
10.2307/2965425
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
This article introduces a generalization of the partial least squares regression (PLS). Transforming the predictors by means of spline functions is a useful way to extend PLS into nonlinearity and to obtain a multiresponse additive model. We describe both statistical and computational aspects of this new method, termed additive splines partial least squares (ASPLS). The performance of ASPLS compared with other PLS methods is illustrated with chemical and physiological applications.
引用
收藏
页码:1546 / 1554
页数:9
相关论文
共 28 条
[1]  
BREIMAN L, 1985, J AM STAT ASSOC, V80, P580, DOI 10.2307/2288473
[2]   FITTING ADDITIVE-MODELS TO REGRESSION DATA - DIAGNOSTICS AND ALTERNATIVE VIEWS [J].
BREIMAN, L .
COMPUTATIONAL STATISTICS & DATA ANALYSIS, 1993, 15 (01) :13-46
[3]  
de Boor C., 1978, PRACTICAL GUIDE SPLI, DOI DOI 10.1007/978-1-4612-6333-3
[4]   GENERALIZED PRINCIPAL COMPONENT ANALYSIS WITH RESPECT TO INSTRUMENTAL VARIABLES VIA UNIVARIATE SPLINE TRANSFORMATIONS [J].
DURAND, JF .
COMPUTATIONAL STATISTICS & DATA ANALYSIS, 1993, 16 (04) :423-440
[5]  
Eubank R.L., 1988, SPLINE SMOOTHING NON
[6]   A STATISTICAL VIEW OF SOME CHEMOMETRICS REGRESSION TOOLS [J].
FRANK, IE ;
FRIEDMAN, JH .
TECHNOMETRICS, 1993, 35 (02) :109-135
[7]   A NONLINEAR PLS MODEL [J].
FRANK, IE .
CHEMOMETRICS AND INTELLIGENT LABORATORY SYSTEMS, 1990, 8 (02) :109-119
[8]   ACE - A NON-LINEAR REGRESSION-MODEL [J].
FRANK, IE ;
LANTERI, S .
CHEMOMETRICS AND INTELLIGENT LABORATORY SYSTEMS, 1988, 3 (04) :301-313
[9]  
FRIEDMAN JH, 1989, TECHNOMETRICS, V31, P3, DOI 10.2307/1270359
[10]  
Hastie T., 1990, Generalized additive model