RNA-dependent RNA polymerase is an essential component of a self-enforcing loop coupling heterochromatin assembly to siRNA production

被引:226
作者
Sugiyama, T
Cam, H
Verdel, A
Moazed, D
Grewal, SIS [1 ]
机构
[1] NCI, Mol Cell Biol Lab, NIH, Bethesda, MD 20892 USA
[2] Harvard Univ, Sch Med, Dept Cell Biol, Boston, MA 02115 USA
关键词
RNA interference; Schizosaccharomyces pombe;
D O I
10.1073/pnas.0407641102
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
In fission yeast, factors involved in the RNA interference (RNAi) pathway including Argonaute, Dicer, and RNA-dependent RNA polymerase are required for heterochromatin assembly at centromeric repeats and the silent mating-type region. Previously, we have shown that RNA-induced initiation of transcriptional gene silencing (RITS) complex containing the Argonaute protein and small interfering RNAs (siRNAs) localizes to heterochromatic loci and collaborates with heterochromatin assembly factors via a self-enforcing RNAi loop mechanism to couple siRNA generation with heterochromatin formation. Here, we investigate the role of RNA-dependent RNA polymerase (Rdp1) and its polymerase activity in the assembly of heterochromatin. We find that Rdp1, similar to RITS, localizes to all known heterochromatic loci, and its localization at centromeric repeats depends on components of RITS and Dicer as well as heterochromatin assembly factors including Clr4/Suv39h and Swi6/HP1 proteins. We show that a point mutation within the catalytic domain of Rdp1 abolished its RNA-dependent RNA polymerase activity and resulted in the loss of transcriptional silencing and heterochromatin at centromeres, together with defects in mitotic chromosome segregation and telomere clustering. Moreover, the RITS complex in the rdp1 mutant does not contain siRNAs, and is delocalized from centromeres. These results not only implicate Rdp1 as an essential component of a self-enforcing RNAi loop but also ascribe a critical role for its RNA-dependent RNA polymerase activity in siRNA production necessary for heterochromatin formation.
引用
收藏
页码:152 / 157
页数:6
相关论文
共 41 条
[1]   MUTATIONS DEREPRESSING SILENT CENTROMERIC DOMAINS IN FISSION YEAST DISRUPT CHROMOSOME SEGREGATION [J].
ALLSHIRE, RC ;
NIMMO, ER ;
EKWALL, K ;
JAVERZAT, JP ;
CRANSTON, G .
GENES & DEVELOPMENT, 1995, 9 (02) :218-233
[2]   Selective recognition of methylated lysine 9 on histone H3 by the HP1 chromo domain [J].
Bannister, AJ ;
Zegerman, P ;
Partridge, JF ;
Miska, EA ;
Thomas, JO ;
Allshire, RC ;
Kouzarides, T .
NATURE, 2001, 410 (6824) :120-124
[3]   Gene silencing in Neurospora crassa requires a protein homologous to RNA-dependent RNA polymerase [J].
Cogoni, C ;
Macino, G .
NATURE, 1999, 399 (6732) :166-169
[4]   A novel class of evolutionarily conserved genes defined by piwi are essential for stem cell self-renewal [J].
Cox, DN ;
Chao, A ;
Baker, J ;
Chang, L ;
Qiao, D ;
Lin, HF .
GENES & DEVELOPMENT, 1998, 12 (23) :3715-3727
[5]   An RNA-Dependent RNA polymerase gene in Arabidopsis is required for posttranscriptional gene silencing mediated by a transgene but not by a virus [J].
Dalmay, T ;
Hamilton, A ;
Rudd, S ;
Angell, S ;
Baulcombe, DC .
CELL, 2000, 101 (05) :543-553
[6]   Transient inhibition of histone deacetylation alters the structural and functional imprint at fission yeast centromeres [J].
Ekwall, K ;
Olsson, T ;
Turner, BM ;
Cranston, G ;
Allshire, RC .
CELL, 1997, 91 (07) :1021-1032
[7]   Dicer is essential for formation of the heterochromatin structure in vertebrate cells [J].
Fukagawa, T ;
Nogami, M ;
Yoshikawa, M ;
Ikeno, M ;
Okazaki, T ;
Takami, Y ;
Nakayama, T ;
Oshimura, M .
NATURE CELL BIOLOGY, 2004, 6 (08) :784-791
[8]   RNA interference machinery regulates chromosome dynamics during mitosis and meiosis in fission yeast [J].
Hall, IM ;
Noma, K ;
Grewal, SIS .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2003, 100 (01) :193-198
[9]   Establishment and maintenance of a heterochromatin domain [J].
Hall, IM ;
Shankaranarayana, GD ;
Noma, KI ;
Ayoub, N ;
Cohen, A ;
Grewal, SIS .
SCIENCE, 2002, 297 (5590) :2232-2237
[10]  
Hall Ira M., 2003, P205