THE CROSSTALK BETWEEN PHYSIOLOGY AND CIRCADIAN CLOCK PROTEINS

被引:184
作者
Duguay, David [1 ,2 ]
Cermakian, Nicolas [1 ,2 ]
机构
[1] Douglas Mental Hlth Univ Inst, Lab Mol Chronobiol, Montreal, PQ H4H 1R3, Canada
[2] McGill Univ, Dept Psychiat, Montreal, PQ, Canada
基金
加拿大自然科学与工程研究理事会; 加拿大健康研究院;
关键词
Circadian rhythms; Clock genes; Peripheral clocks; Metabolism; Posttranslational modifications; REV-ERB-ALPHA; DROSOPHILA PERIOD PROTEIN; ORPHAN NUCLEAR RECEPTORS; HIGH-FAT DIET; GENE-EXPRESSION; POSTTRANSLATIONAL REGULATION; METABOLIC SYNDROME; MAMMALIAN CLOCK; SUPRACHIASMATIC NUCLEUS; HISTONE ACETYLATION;
D O I
10.3109/07420520903497575
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
In mammals, many physiological processes present diurnal variations, and most of these rhythms persist even in absence of environmental timing cues. These endogenous circadian rhythms are generated by intracellular timing mechanisms termed circadian clocks. In mammals, the master clock is located in the suprachiasmatic nuclei (SCN), but other brain regions and most peripheral tissues contain circadian clocks. These clocks are responsive to environmental cues, in particular light/dark and feeding/fasting cycles. In the last few years, tissue-specific knock-out and transgenic mouse models have helped to define the physiological roles of specific clocks. Recent reports indicate that the clock-physiology connection is bi-directional, and physiological cues, in particular the energetic status of the cell, can feed into the clockwork. This effect was discovered unexpectedly in molecular analyses of clock protein modifications. Beyond the positive and negative transcription/translation feedback loops of the molecular oscillator lies another level of complexity. Post-translational modifications of clock proteins are both critical for the timing of the clock feedback mechanism and to provide regulatory fine-tuning. This review summarizes recent advances in our understanding of the roles of peripheral clocks and of post-translational modifications occurring on clock proteins. These two matters are at the intersection of physiology, metabolism, and the circadian system. (Author correspondence: nicolas.cermakian@mcgill.ca)
引用
收藏
页码:1479 / 1513
页数:35
相关论文
共 207 条
[1]   The orphan nuclear receptor RORα regulates circadian transcription of the mammalian core-clock Bmal1 [J].
Akashi, M ;
Takumi, T .
NATURE STRUCTURAL & MOLECULAR BIOLOGY, 2005, 12 (05) :441-448
[2]   Control of intracellular dynamics of mammalian period proteins by casein kinase I ε (CKIε) and CKIδ in cultured cells [J].
Akashi, M ;
Tsuchiya, Y ;
Yoshino, T ;
Nishida, E .
MOLECULAR AND CELLULAR BIOLOGY, 2002, 22 (06) :1693-1703
[3]   Mitogen-activated protein kinase is a functional component of the autonomous circadian system in the suprachiasmatic nucleus [J].
Akashi, Makoto ;
Hayasaka, Naoto ;
Yamazaki, Shin ;
Node, Koichi .
JOURNAL OF NEUROSCIENCE, 2008, 28 (18) :4619-4623
[4]   Circadian cycling of the mouse liver transcriptome, as revealed by cDNA microarray, is driven by the suprachiasmatic nucleus [J].
Akhtar, RA ;
Reddy, AB ;
Maywood, ES ;
Clayton, JD ;
King, VM ;
Smith, AG ;
Gant, TW ;
Hastings, MH ;
Kyriacou, CP .
CURRENT BIOLOGY, 2002, 12 (07) :540-550
[5]   Nuclear receptor corepressor and histone deacetylase 3 govern circadian metabolic physiology [J].
Alenghat, Theresa ;
Meyers, Katherine ;
Mullican, Shannon E. ;
Leitner, Kirstin ;
Adeniji-Adele, Adetoun ;
Avila, Jacqueline ;
Bucan, Maja ;
Ahima, Rexford S. ;
Kaestner, Klaus H. ;
Lazar, Mitchell A. .
NATURE, 2008, 456 (7224) :997-U88
[6]   Casein kinase 2, circadian clocks, and the flight from mutagenic light [J].
Allada, R ;
Meissner, RA .
MOLECULAR AND CELLULAR BIOCHEMISTRY, 2005, 274 (1-2) :141-149
[7]   The circadian clock protein BMAL1 is necessary for fertility and proper testosterone production in mice [J].
Alvarez, J. D. ;
Hansen, Amanda ;
Ord, Teri ;
Bebas, Piotr ;
Chappell, Patrick E. ;
Giebultowicz, Jadwiga M. ;
Williams, Carmen ;
Moss, Stuart ;
Sehgal, Amita .
JOURNAL OF BIOLOGICAL RHYTHMS, 2008, 23 (01) :26-36
[8]   Circadian clock genes as modulators of sensitivity to genotoxic stress [J].
Antoch, MP ;
Kondratov, RV ;
Takahashi, JS .
CELL CYCLE, 2005, 4 (07) :901-907
[9]   SIRT1 regulates circadian clock gene expression through PER2 deacetylation [J].
Asher, Gad ;
Gatfield, David ;
Stratmann, Markus ;
Reinke, Hans ;
Dibner, Charna ;
Kreppel, Florian ;
Mostoslavsky, Raul ;
Alt, Frederick W. ;
Schibler, Ueli .
CELL, 2008, 134 (02) :317-328
[10]   Resetting of circadian time peripheral tissues by glucocorticoid signaling [J].
Balsalobre, A ;
Brown, SA ;
Marcacci, L ;
Tronche, F ;
Kellendonk, C ;
Reichardt, HM ;
Schütz, G ;
Schibler, U .
SCIENCE, 2000, 289 (5488) :2344-2347