Assessing optimal set of implemented physical parameterization schemes in a multi-physics land surface model using genetic algorithm

被引:31
作者
Hong, S. [1 ]
Yu, X. [1 ]
Park, S. K. [1 ,2 ,3 ,4 ]
Choi, Y. -S. [1 ,2 ,3 ,4 ]
Myoung, B. [1 ]
机构
[1] Ewha Womans Univ, Ctr Climate Environm Change Predict Res, Seoul, South Korea
[2] Ewha Womans Univ, Severe Storm Res Ctr, Seoul, South Korea
[3] Ewha Womans Univ, Dept Environm Sci & Engn, Seoul, South Korea
[4] Ewha Womans Univ, Dept Atmospher Sci & Engn, Seoul, South Korea
基金
新加坡国家研究基金会;
关键词
QUANTITATIVE PRECIPITATION FORECAST; GLOBAL CLIMATE; CALIBRATION; RUNOFF; SOIL; EVAPOTRANSPIRATION; OPTIMIZATION; PERFORMANCE; IMPACT; LAYER;
D O I
10.5194/gmd-7-2517-2014
中图分类号
P [天文学、地球科学];
学科分类号
07 ;
摘要
Optimization of land surface models has been challenging due to the model complexity and uncertainty. In this study, we performed scheme-based model optimizations by designing a framework for coupling "the micro-genetic algorithm" (micro-GA) and "the Noah land surface model with multiple physics options" (Noah-MP). Micro-GA controls the scheme selections among eight different land surface parameterization categories, each containing 2-4 schemes, in Noah-MP in order to extract the optimal scheme combination that achieves the best skill score. This coupling framework was successfully applied to the optimizations of evapotranspiration and runoff simulations in terms of surface water balance over the Han River basin in Korea, showing outstanding speeds in searching for the optimal scheme combination. Taking advantage of the natural selection mechanism in micro-GA, we explored the model sensitivity to scheme selections and the scheme interrelationship during the micro-GA evolution process. This information is helpful for better understanding physical parameterizations and hence it is expected to be effectively used for further optimizations with uncertain parameters in a specific set of schemes.
引用
收藏
页码:2517 / 2529
页数:13
相关论文
共 52 条
[1]  
[Anonymous], 1987, PROG PHOTOSYNTH RES, DOI DOI 10.1007/978-94-017-0519-6_48
[2]  
[Anonymous], SPIE P INTELLIGENT C
[3]  
[Anonymous], 2001, An Introduction to Genetic Algorithms. Complex Adaptive Systems
[4]  
[Anonymous], NOTE, DOI DOI 10.5065/D68S4MVH
[5]  
Bastani M, 2010, HYDROGEOL J, V18, P1191, DOI 10.1007/s10040-010-0599-8
[6]  
Brutsaert W., 2013, Evaporation into the Atmosphere: Theory, History and Applications
[7]   Calibration of a crop model to irrigated water use using a genetic algorithm [J].
Bulatewicz, T. ;
Jin, W. ;
Staggenborg, S. ;
Lauwo, S. ;
Miller, M. ;
Das, S. ;
Andresen, D. ;
Peterson, J. ;
Steward, D. R. ;
Welch, S. M. .
HYDROLOGY AND EARTH SYSTEM SCIENCES, 2009, 13 (08) :1467-1483
[8]   Hydrological evaluation of the Noah-MP land surface model for the Mississippi River Basin [J].
Cai, Xitian ;
Yang, Zong-Liang ;
David, Cedric H. ;
Niu, Guo-Yue ;
Rodell, Matthew .
JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2014, 119 (01) :23-38
[9]   Modeling of land surface evaporation by four schemes and comparison with FIFE observations [J].
Chen, F ;
Mitchell, K ;
Schaake, J ;
Xue, YK ;
Pan, HL ;
Koren, V ;
Duan, QY ;
Ek, M ;
Betts, A .
JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 1996, 101 (D3) :7251-7268
[10]   Impact of atmospheric surface-layer parameterizations in the new land-surface scheme of the NCEP mesoscale Eta model [J].
Chen, F ;
Janjic, Z ;
Mitchell, K .
BOUNDARY-LAYER METEOROLOGY, 1997, 85 (03) :391-421