The core of the tetrameric mycobacterial porin MspA is an extremely stable β-sheet domain

被引:62
作者
Heinz, C
Engelhardt, H
Niederweis, M
机构
[1] Univ Erlangen Nurnberg, Lehrstuhl Mikrobiol, D-91058 Erlangen, Germany
[2] Max Planck Inst Biochem, Abt Mol Strukturbiol, D-82152 Martinsried, Germany
关键词
D O I
10.1074/jbc.M212280200
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
MspA is the major porin of Mycobacterium smegmatis mediating the exchange of hydrophilic solutes across the cell wall and is the prototype of a new family of tetrameric porins with a single central pore of 10 nm in length. Infrared and circular dichroism spectroscopy revealed that MspA consists mainly of antiparallel beta-strands organized in a coherent domain. Heating to 92 and 112 degreesC was required to dissociate the MspA tetramer and to unfold the beta-sheet domain in the monomer, respectively. The stability of the MspA tetramer exceeded the remarkable stability of the porins of Gram-negative bacteria for every condition tested and was not reduced in the presence of 2% SDS and at any pH from 2 to 14. These results indicated that the interactions between the MspA subunits are different from those in the porins of Gram-negative bacteria and are discussed in the light of a channel-forming beta-barrel as a core structure of MspA. Surprisingly, the channel activity of MspA in 2% SDS and 7.6 m urea at 50 degreesC was reduced 13- and 30-fold, respectively, although the MspA tetramer and the beta-sheet domain were stable under those conditions. Channel closure by conformational changes of extracellular loops under those conditions is discussed to explain these observations. This study presents the first experimental evidence that outer membrane proteins not only from Gram-negative bacteria but also from mycobacteria are beta-sheet proteins and demonstrates that MspA constitutes the most stable transmembrane channel protein known so far. Thus, MspA may be of special interest for biotechnological applications.
引用
收藏
页码:8678 / 8685
页数:8
相关论文
共 49 条
[1]   pH-induced collapse of the extracellular loops closes Escherichia coli maltoporin and allows the study of asymmetric sugar binding [J].
Andersen, C ;
Schiffler, B ;
Charbit, A ;
Benz, R .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2002, 277 (44) :41318-41325
[2]   The regulated outer membrane protein Omp21 from Comamonas acidovorans is identified as a member of a new family of eight-stranded β-sheet proteins by its sequence and properties [J].
Baldermann, C ;
Lupas, A ;
Lubieniecki, J ;
Engelhardt, H .
JOURNAL OF BACTERIOLOGY, 1998, 180 (15) :3741-3749
[3]   Mycolic acids: Structure, biosynthesis and physiological functions [J].
Barry, CE ;
Lee, RE ;
Mdluli, K ;
Sampson, AE ;
Schroeder, BG ;
Slayden, RA ;
Yuan, Y .
PROGRESS IN LIPID RESEARCH, 1998, 37 (2-3) :143-179
[4]   Stochastic sensors inspired by biology [J].
Bayley, H ;
Cremer, PS .
NATURE, 2001, 413 (6852) :226-230
[5]   Stability studies of FhuA, a two-domain outer membrane protein from Escherichia coli [J].
Bonhivers, M ;
Desmadril, M ;
Moeck, GS ;
Boulanger, P ;
Colomer-Pallas, A ;
Letellier, L .
BIOCHEMISTRY, 2001, 40 (08) :2606-2613
[6]   THE ENVELOPE OF MYCOBACTERIA [J].
BRENNAN, PJ ;
NIKAIDO, H .
ANNUAL REVIEW OF BIOCHEMISTRY, 1995, 64 :29-63
[7]   EXAMINATION OF THE SECONDARY STRUCTURE OF PROTEINS BY DECONVOLVED FTIR SPECTRA [J].
BYLER, DM ;
SUSI, H .
BIOPOLYMERS, 1986, 25 (03) :469-487
[8]   Structural details of urea binding to barnase: a molecular dynamics analysis [J].
Caflisch, A ;
Karplus, M .
STRUCTURE WITH FOLDING & DESIGN, 1999, 7 (05) :477-488
[9]   Elucidation of determinants of protein stability through genome sequence analysis [J].
Chakravarty, S ;
Varadarajan, R .
FEBS LETTERS, 2000, 470 (01) :65-69
[10]   CRYSTAL-STRUCTURES EXPLAIN FUNCTIONAL-PROPERTIES OF 2 ESCHERICHIA-COLI PORINS [J].
COWAN, SW ;
SCHIRMER, T ;
RUMMEL, G ;
STEIERT, M ;
GHOSH, R ;
PAUPTIT, RA ;
JANSONIUS, JN ;
ROSENBUSCH, JP .
NATURE, 1992, 358 (6389) :727-733