Nitric oxide synthase-dependent nitric oxide production is associated with salt tolerance in Arabidopsis

被引:309
作者
Zhao, Min-Gui [1 ]
Tian, Qiu-Ying [1 ]
Zhang, Wen-Hao [1 ]
机构
[1] Chinese Acad Sci, Inst Bot, Key Lab Photosynth & Environm Mol Physiol, Beijing 100093, Peoples R China
关键词
D O I
10.1104/pp.107.096842
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
Nitric oxide (NO) has emerged as a key molecule involved in many physiological processes in plants. To characterize roles of NO in tolerance of Arabidopsis (Arabidopsis thaliana) to salt stress, effect of NaCl on Arabidopsis wild-type and mutant (Atnoa1) plants with an impaired in vivo NO synthase (NOS) activity and a reduced endogenous NO level was investigated. Atnoa1 mutant plants displayed a greater Na+ to K+ ratio in shoots than wild-type plants due to enhanced accumulation of Na+ and reduced accumulation of K+ when exposed to NaCl. Germination of Atnoa1 seeds was more sensitive to NaCl than that of wild-type seeds, and wild-type plants exhibited higher survival rates than Atnoa1 plants when grown under salt stress. Atnoa1 plants had higher levels of hydrogen peroxide than wild-type plants under both control and salt stress, suggesting that Atnoa1 is more vulnerable to salt and oxidative stress than wild-type plants. Treatments of wild-type plants with NOS inhibitor and NO scavenger reduced endogenous NO levels and enhanced NaCl-induced increase in Na+ to K+ ratio. Exposure of wild-type plants to NaCl inhibited NOS activity and reduced quantity of NOA1 protein, leading to a decrease in endogenous NO levels measured by NO-specific fluorescent probe. Treatment of Atnoa1 plants with NO donor sodium nitroprusside attenuated the NaCl- induced increase in Na+ to K+ ratio. Therefore, these findings provide direct evidence to support that disruption of NOS-dependent NO production is associated with salt tolerance in Arabidopsis.
引用
收藏
页码:206 / 217
页数:12
相关论文
共 52 条
[1]   Arginine conversion to nitroxide by tetrahydrobiopterin-free neuronal nitric-oxide synthase - Implications for mechanism [J].
Adak, S ;
Wang, Q ;
Stuehr, DJ .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2000, 275 (43) :33554-33561
[2]  
[Anonymous], ANN REV PLANT BIOL
[3]   Nitric oxide counteracts cytotoxic processes mediated by reactive oxygen species in plant tissues [J].
Beligni, MV ;
Lamattina, L .
PLANTA, 1999, 208 (03) :337-344
[4]   Nitric oxide stimulates seed germination and de-etiolation, and inhibits hypocotyl elongation, three light-inducible responses in plants [J].
Beligni, MV ;
Lamattina, L .
PLANTA, 2000, 210 (02) :215-221
[5]   Apoplastic synthesis of nitric oxide by plant tissues [J].
Bethke, PC ;
Badger, MR ;
Jones, RL .
PLANT CELL, 2004, 16 (02) :332-341
[6]  
BRADFORD MM, 1976, ANAL BIOCHEM, V72, P248, DOI 10.1016/0003-2697(76)90527-3
[7]   ABA-induced NO generation and stomatal closure in Arabidopsis are dependent on H2O2 synthesis [J].
Bright, J ;
Desikan, R ;
Hancock, JT ;
Weir, IS ;
Neill, SJ .
PLANT JOURNAL, 2006, 45 (01) :113-122
[8]  
Buege J A, 1978, Methods Enzymol, V52, P302
[9]   Plant nitric oxide synthase: back to square one - Response [J].
Crawford, Nigel M. ;
Galli, Mary ;
Tischner, Rudolf ;
Heimer, Yair M. ;
Okamoto, Mamoru ;
Mack, Alyson .
TRENDS IN PLANT SCIENCE, 2006, 11 (11) :526-527
[10]   New insights into nitric oxide metabolism and regulatory functions [J].
Crawford, NM ;
Guo, FQ .
TRENDS IN PLANT SCIENCE, 2005, 10 (04) :195-200