Vibration pattern of the organ of Corti up to 50 kHz: Evidence for resonant electromechanical force

被引:32
作者
Scherer, MP [1 ]
Gummer, AW [1 ]
机构
[1] Univ Tubingen, Dept Otolaryngol, Tubingen Hearing Res Ctr, Sect Physiol Acoust & Commun, D-72076 Tubingen, Germany
关键词
cochlea; hair cell; motility;
D O I
10.1073/pnas.0408232101
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Electromechanical force derived from the soma of the outer hair cell has long been postulated as the basis of the exquisite sensitivity of the cochlea. The problem with this postulate is that the electrical source and mechanical load for the electromechanical outer hair cell might be severely attenuated and phase-shifted by the electrical impedance of the cell and the mechanical impedance of the organ of Corti, respectively. Until now, it has not been possible to experimentally derive the high-frequency electrically induced force at the reticular lamina when the cells are embedded within the organ of Corti. In the study reported here, we succeeded in determining the frequency spectrum of the force up to 50 kHz. This was achieved by measuring both the electrically induced velocity and the mechanical impedance at different radial positions on the reticular lamina without tectorial membrane and with clamped basilar membrane. Velocity was measured with a laser interferometer and impedance, with a magnetically driven atomic force cantilever. The electromechanical force, normalized to the electric current density, exhibited a broad amplitude maximum at 7-20 kHz with a quality factor, Q(3dB), of 0.6-0.8. The displacement response was indepencent of frequency up to 10-20 kHz. The force response compensates for the viscoelastic impedance of the organ of Corti, extending the amplitude response of the organ to high frequencies. It is proposed that the electrical phase response of the cell is compensated with Zwislocki's original mechanism of a parallel resonance in the tectorial membrane-stereocilia complex.
引用
收藏
页码:17652 / 17657
页数:6
相关论文
共 55 条
[1]   COCHLEAR MICROMECHANICS - A PHYSICAL MODEL OF TRANSDUCTION [J].
ALLEN, JB .
JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA, 1980, 68 (06) :1660-1670
[2]  
ALLEN JB, 2003, BIOPHYSICS COCHLEA M, P563
[3]   A FAST MOTILE RESPONSE IN GUINEA-PIG OUTER HAIR-CELLS - THE CELLULAR BASIS OF THE COCHLEAR AMPLIFIER [J].
ASHMORE, JF .
JOURNAL OF PHYSIOLOGY-LONDON, 1987, 388 :323-347
[4]  
Blanchet C, 1996, J NEUROSCI, V16, P2574
[5]   EVOKED MECHANICAL RESPONSES OF ISOLATED COCHLEAR OUTER HAIR-CELLS [J].
BROWNELL, WE ;
BADER, CR ;
BERTRAND, D ;
DERIBAUPIERRE, Y .
SCIENCE, 1985, 227 (4683) :194-196
[6]   Evidence of tectorial membrane radial motion in a propagating mode of a complex cochlear model [J].
Cai, HX ;
Shoelson, B ;
Chadwick, RS .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2004, 101 (16) :6243-6248
[7]   Motion analysis in the hemicochlea [J].
Cai, HX ;
Richter, CP ;
Chadwick, RS .
BIOPHYSICAL JOURNAL, 2003, 85 (03) :1929-1937
[9]   Prestin, a new type of motor protein [J].
Dallos, P ;
Fakler, B .
NATURE REVIEWS MOLECULAR CELL BIOLOGY, 2002, 3 (02) :104-111
[10]  
DALLOS P, 1985, J NEUROSCI, V5, P1591