Global impacts of conversions from natural to agricultural ecosystems on water resources: Quantity versus quality

被引:387
作者
Scanlon, Bridget R. [1 ]
Jolly, Ian
Sophocleous, Marios
Zhang, Lu
机构
[1] Univ Texas, Jackson Sch Geosci, Bur Econ Geol, Austin, TX 78713 USA
[2] CSIRO Land & Water, Adelaide, SA, Australia
[3] Kansas Geol Survey, Lawrence, KS 66047 USA
[4] CSIRO Land & Water, Canberra, ACT 2601, Australia
关键词
D O I
10.1029/2006WR005486
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
[1] Past land use changes have greatly impacted global water resources, with often opposing effects on water quantity and quality. Increases in rain-fed cropland (460%) and pastureland (560%) during the past 300 years from forest and grasslands decreased evapotranspiration and increased recharge ( two orders of magnitude) and streamflow ( one order of magnitude). However, increased water quantity degraded water quality by mobilization of salts, salinization caused by shallow water tables, and fertilizer leaching into underlying aquifers that discharge to streams. Since the 1950s, irrigated agriculture has expanded globally by 174%, accounting for similar to 90% of global freshwater consumption. Irrigation based on surface water reduced streamflow and raised water tables resulting in waterlogging in many areas ( China, India, and United States). Marked increases in groundwater-fed irrigation in the last few decades in these areas has lowered water tables ( <= 1 m/yr) and reduced streamflow. Degradation of water quality in irrigated areas has resulted from processes similar to those in rain-fed agriculture: salt mobilization, salinization in waterlogged areas, and fertilizer leaching. Strategies for remediating water resource problems related to agriculture often have opposing effects on water quantity and quality. Long time lags ( decades to centuries) between land use changes and system response ( e. g., recharge, streamflow, and water quality), particularly in semiarid regions, mean that the full impact of land use changes has not been realized in many areas and remediation to reverse impacts will also take a long time. Future land use changes should consider potential impacts on water resources, particularly trade-offs between water, salt, and nutrient balances, to develop sustainable water resources to meet human and ecosystem needs.
引用
收藏
页数:18
相关论文
共 149 条
[1]   Impacts of afforestation on groundwater resources and quality [J].
Allen, A ;
Chapman, D .
HYDROGEOLOGY JOURNAL, 2001, 9 (04) :390-400
[2]   LAND CLEARANCE AND RIVER SALINIZATION IN THE WESTERN MURRAY BASIN, AUSTRALIA [J].
ALLISON, GB ;
COOK, PG ;
BARNETT, SR ;
WALKER, GR ;
JOLLY, ID ;
HUGHES, MW .
JOURNAL OF HYDROLOGY, 1990, 119 (1-4) :1-20
[3]   THE USE OF NATURAL TRACERS AS INDICATORS OF SOIL-WATER MOVEMENT IN A TEMPERATE SEMI-ARID REGION [J].
ALLISON, GB ;
HUGHES, MW .
JOURNAL OF HYDROLOGY, 1983, 60 (1-4) :157-173
[4]  
[Anonymous], AGR RESOURCES ENV IN
[5]  
[Anonymous], 4501 CSIRO
[6]   Hydroengineering - Controversial Rivers Project aims to turn India's fierce monsoon into a friend [J].
Bagla, Pallava .
SCIENCE, 2006, 313 (5790) :1036-1037
[7]   LOWERING OF A SHALLOW, SALINE WATER-TABLE BY EXTENSIVE EUCALYPT REFORESTATION [J].
BARI, MA ;
SCHOFIELD, NJ .
JOURNAL OF HYDROLOGY, 1992, 133 (3-4) :273-291
[8]  
Baron JS, 2002, ECOL APPL, V12, P1247
[10]   DRYLAND CROPPING STRATEGIES FOR EFFICIENT WATER-USE TO CONTROL SALINE SEEPS IN THE NORTHERN GREAT PLAINS, USA [J].
BLACK, AL ;
BROWN, PL ;
HALVORSON, AD ;
SIDDOWAY, FH .
AGRICULTURAL WATER MANAGEMENT, 1981, 4 (1-3) :295-311