Water dynamics simulation as a tool for probing proton transfer pathways in a heptahelical membrane protein

被引:28
作者
Kandt, C [1 ]
Gerwert, K [1 ]
Schlitter, J [1 ]
机构
[1] Ruhr Univ Bochum, Lehrstuhl Biophys, D-44780 Bochum, Germany
关键词
bacteriorhodopsin; N-intermediate; molecular dynamics simulation; water density; retinal protein; proton pump; internal water; H-bonded network;
D O I
10.1002/prot.20343
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The proton transfer pathway in a heptahelical membrane protein, the light-driven proton pump bacteriorhodopsin (BR), is probed by a combined approach of structural analysis of recent X-ray models and molecular dynamics (MD) simulations that provide the diffusion pathways of internal and external water molecules. Analyzing the hydrogen-bond contact frequencies of the water molecules with protein groups, the complete proton pathway through the protein is probed. Beside the well-known proton binding sites in the protein interior-the protonated Schiff base, Asp85 and Asp96, and the H5O2+ complex stabilized by Glu204 and Glu194-the proton release and uptake pathways to the protein surfaces are described in great detail. Further residues were identified, by mutation of which the proposed pathways can be verified. In addition the diffusion pathway of water 502 from Lys216 to Asp96 is shown to cover the positions of the intruding waters 503 and 504 in the N-intermediate. The transiently established water chain in the N-state provides a proton pathway from Asp96 to the Schiff base in the M- to N-transition in a Grotthus-like mechanism, as concluded earlier from time-resolved Fourier transform infrared experiments. (C) 2004 Wiley-Liss, Inc.
引用
收藏
页码:528 / 537
页数:10
相关论文
共 48 条
[1]   RAPID LONG-RANGE PROTON DIFFUSION ALONG THE SURFACE OF THE PURPLE MEMBRANE AND DELAYED PROTON-TRANSFER INTO THE BULK [J].
ALEXIEV, U ;
MOLLAAGHABABA, R ;
SCHERRER, P ;
KHORANA, HG ;
HEYN, MP .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1995, 92 (02) :372-376
[2]   ELECTROSTATIC CALCULATIONS OF THE PKA VALUES OF IONIZABLE GROUPS IN BACTERIORHODOPSIN [J].
BASHFORD, D ;
GERWERT, K .
JOURNAL OF MOLECULAR BIOLOGY, 1992, 224 (02) :473-486
[3]   Molecular dynamics study of bacteriorhodopsin and the purple membrane [J].
Baudry, J ;
Tajkhorshid, E ;
Molnar, F ;
Phillips, J ;
Schulten, K .
JOURNAL OF PHYSICAL CHEMISTRY B, 2001, 105 (05) :905-918
[4]   Protein, lipid and water organization in bacteriorhodopsin crystals:: a molecular view of the purple membrana at 1.9 Å resolution [J].
Belrhali, H ;
Nollert, P ;
Royant, A ;
Menzel, C ;
Rosenbusch, JP ;
Landau, EM ;
Pebay-Peyroula, E .
STRUCTURE, 1999, 7 (08) :909-917
[5]   GROMACS - A MESSAGE-PASSING PARALLEL MOLECULAR-DYNAMICS IMPLEMENTATION [J].
BERENDSEN, HJC ;
VANDERSPOEL, D ;
VANDRUNEN, R .
COMPUTER PHYSICS COMMUNICATIONS, 1995, 91 (1-3) :43-56
[6]   ANALYSIS OF HIGH-RESOLUTION ELECTRON-DIFFRACTION PATTERNS FROM PURPLE MEMBRANE LABELED WITH HEAVY-ATOMS [J].
CESKA, TA ;
HENDERSON, R .
JOURNAL OF MOLECULAR BIOLOGY, 1990, 213 (03) :539-560
[7]  
DENCHER NA, 1992, JERUS SYM Q, V25, P69
[8]  
DENCHER NA, 1992, STRUCTURES FUNCTIONS, V221, P213
[9]  
EDHOLM O, 1992, MEMBRANE PROTEINS ST
[10]   Lipid patches in membrane protein oligomers: Crystal structure of the bacteriorhodopsin-lipid complex [J].
Essen, LO ;
Siegert, R ;
Lehmann, WD ;
Oesterhelt, D .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1998, 95 (20) :11673-11678