Global synchronization criterion and adaptive synchronization for new chaotic system

被引:40
作者
Elabbasy, EM [1 ]
Agiza, HN [1 ]
El-Dessoky, MM [1 ]
机构
[1] Mansoura Univ, Fac Sci, Dept Math, Mansoura 35516, Egypt
关键词
D O I
10.1016/j.chaos.2004.06.068
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This paper proposes two schemes of synchronization of two four-scorll chaotic attractor, a simple global synchronization and adaptive synchronization in the presence of unknown system parameters. Based on Lyapunov stability theory and matrix measure, a simple generic criterion is derived for global synchronization of four-scorll chaotic attractor system with a unidirectional linear error feedback coupling. This methods are applicable to a large class of chaotic systems where only a few algebraic inequalities are involved. Numerical simulations are presented to show the effectiveness of the proposed chaos synchronization method. (C) 2004 Published by Elsevier Ltd.
引用
收藏
页码:1299 / 1309
页数:11
相关论文
共 28 条
[1]  
AGIZA HN, 1998, CHAOS SOLITON FRACT, V9, P1555
[2]  
[Anonymous], 2002, CHAOTIC TIME SERIES
[3]   SYNCHRONIZING CHAOTIC CIRCUITS [J].
CARROLL, TL ;
PECORA, LM .
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS, 1991, 38 (04) :453-456
[4]  
Chen G., 1998, CHAOS ORDER
[5]   Yet another chaotic attractor [J].
Chen, GR ;
Ueta, T .
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 1999, 9 (07) :1465-1466
[6]  
Elabbasy EM, 2004, INT J NONLIN SCI NUM, V5, P171
[7]   Adaptive synchronization of Lu system with uncertain parameters [J].
Elabbasy, EM ;
Agiza, HN ;
El-Dessoky, MM .
CHAOS SOLITONS & FRACTALS, 2004, 21 (03) :657-667
[8]  
ELABBASY EM, 2004, INT J BIFUR CHAOS, V14
[9]  
HU G, 2000, CHAOS CONTROL CHINA
[10]  
HUBLER A, 1989, HELV PHYS ACTA, V62, P343