The tor pathway regulates gene expression by linking nutrient sensing to histone acetylation

被引:129
作者
Rohde, JR [1 ]
Cardenas, ME [1 ]
机构
[1] Duke Univ, Med Ctr, Dept Mol Genet & Microbiol, Durham, NC 27710 USA
关键词
D O I
10.1128/MCB.23.2.629-635.2003
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The Tor pathway mediates cell growth in response to nutrient availability, in part by inducing ribosomal protein (RP) gene expression via an unknown mechanism. Expression of RP genes coincides with recruitment of the Esa1 histone acetylase to RP gene promoters. We show that inhibition of Tor with rapamycin releases Esa1 from RP gene promoters and leads to histone H4 deacetylation without affecting promoter occupancy by Rap1 and Abf1. Genetic and biochemical evidence identifies Rpd3 as the major histone deacetylase responsible for reversing histone H4 acetylation at RP gene promoters in response to Tor inhibition by rapamycin or nutrient limitation. Our results illustrate that the Tor pathway links nutrient sensing with histone acetylation to control RP gene expression and cell growth.
引用
收藏
页码:629 / 635
页数:7
相关论文
共 50 条
[1]   NuA4, an essential transcription adaptor/histone H4 acetyltransferase complex containing Esa1p and the ATM-related cofactor Tra1p [J].
Allard, S ;
Utley, RT ;
Savard, J ;
Clarke, A ;
Grant, P ;
Brandl, CJ ;
Pillus, L ;
Workman, JL ;
Côté, J .
EMBO JOURNAL, 1999, 18 (18) :5108-5119
[2]   The TOR signalling pathway controls nuclear localization of nutrient-regulated transcription factors [J].
Beck, T ;
Hall, MN .
NATURE, 1999, 402 (6762) :689-692
[3]   The TOR (target of rapamycin) signal transduction pathway regulates the stability of translation initiation factor eIF4G in the yeast Saccharomyces cerevisiae [J].
Berset, C ;
Trachsel, H ;
Altmann, M .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1998, 95 (08) :4264-4269
[4]   Tripartite regulation of Gln3p by TOR, Ure2p, and phosphatases [J].
Bertram, PG ;
Choi, JH ;
Carvalho, J ;
Ai, WD ;
Zeng, CB ;
Chan, TF ;
Zheng, XFS .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2000, 275 (46) :35727-35733
[5]   Recruitment of HAT complexes by direct activator interactions with the ATM-related tra1 subunit [J].
Brown, CE ;
Howe, L ;
Sousa, K ;
Alley, SC ;
Carrozza, MJ ;
Tan, S ;
Workman, JL .
SCIENCE, 2001, 292 (5525) :2333-2337
[6]   The TOR signaling cascade regulates gene expression in response to nutrients [J].
Cardenas, ME ;
Cutler, NS ;
Lorenz, MC ;
Di Como, CJ ;
Heitman, J .
GENES & DEVELOPMENT, 1999, 13 (24) :3271-3279
[7]   A chemical genomics approach toward understanding the global functions of the target of rapamycin protein (TOR) [J].
Chan, TF ;
Carvalho, J ;
Riles, L ;
Zheng, XFS .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2000, 97 (24) :13227-13232
[8]  
Clarke AS, 1999, MOL CELL BIOL, V19, P2515
[9]   The GATA transcription factors GLN3 and GAT1 link TOR to salt stress in Saccharomyces cerevisiae [J].
Crespo, JL ;
Daicho, K ;
Ushimaru, T ;
Hall, MN .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2001, 276 (37) :34441-34444
[10]   Mammalian TOR: A homeostatic ATP sensor [J].
Dennis, PB ;
Jaeschke, A ;
Saitoh, M ;
Fowler, B ;
Kozma, SC ;
Thomas, G .
SCIENCE, 2001, 294 (5544) :1102-1105