Accuracy of tetrode spike separation as determined by simultaneous intracellular and extracellular measurements

被引:821
作者
Harris, KD [1 ]
Henze, DA [1 ]
Csicsvari, J [1 ]
Hirase, H [1 ]
Buzsáki, G [1 ]
机构
[1] Rutgers State Univ, Ctr Mol & Behav Neurosci, Newark, NJ 07102 USA
关键词
D O I
10.1152/jn.2000.84.1.401
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
Simultaneous recording from large numbers of neurons is a prerequisite for understanding their cooperative behavior. Various recording techniques and spike separation methods are being used toward this goal. However, the error rates involved in spike separation have not yet been quantified. We studied the separation reliability of "tetrode" (4-wire electrode) recorded spikes by monitoring simultaneously from the same cell intracellularly with a glass pipette and extracellularly with a tetrode. With manual spike sorting, we found a trade-off between Type I and Type II errors, with errors typically ranging from 0 to 30% depending on the amplitude and firing pattern of the cell, the similarity of the waveshapes of neighboring neurons, and the experience of the operator. Performance using only a single wire was markedly lower, indicating the advantages of multiple-site monitoring techniques over single-wire recordings. For tetrode recordings, error rates were increased by burst activity and during periods of cellular synchrony. The lowest possible separation error rates were estimated by a search for the best ellipsoidal cluster shape. Human operator performance was significantly below the estimated optimum. Investigation of error distributions indicated that suboptimal performance was caused by inability of the operators to mark cluster boundaries accurately in a high-dimensional feature space. We therefore hypothesized that automatic spike-sorting algorithms have the potential to significantly lower error rates. Implementation of a semi-automatic classification system confirms this suggestion, reducing errors close to the estimated optimum, in the range 0-8%.
引用
收藏
页码:401 / 414
页数:14
相关论文
共 52 条
[1]   MULTI-SPIKE TRAIN ANALYSIS [J].
ABELES, M ;
GOLDSTEIN, MH .
PROCEEDINGS OF THE IEEE, 1977, 65 (05) :762-773
[2]   DETECTING SPATIOTEMPORAL FIRING PATTERNS AMONG SIMULTANEOUSLY RECORDED SINGLE NEURONS [J].
ABELES, M ;
GERSTEIN, GL .
JOURNAL OF NEUROPHYSIOLOGY, 1988, 60 (03) :909-924
[3]  
Anderson T., 1984, INTRO MULTIVARIATE S
[4]  
[Anonymous], P 1988 CONN MOD SUMM
[5]   Pattern and inhibition-dependent invasion of pyramidal cell dendrites by fast spikes in the hippocampus in vivo [J].
Buzsaki, G ;
Penttonen, M ;
Nadasdy, Z ;
Bragin, A .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1996, 93 (18) :9921-9925
[6]   Somadendritic backpropagation of action potentials in cortical pyramidal cells of the awake rat [J].
Buzsáki, G ;
Kandel, A .
JOURNAL OF NEUROPHYSIOLOGY, 1998, 79 (03) :1587-1591
[7]   HIGH-FREQUENCY NETWORK OSCILLATION IN THE HIPPOCAMPUS [J].
BUZSAKI, G ;
HORVATH, Z ;
URIOSTE, R ;
HETKE, J ;
WISE, K .
SCIENCE, 1992, 256 (5059) :1025-1027
[8]   RETROGRADE INVASION OF LOBSTER STRETCH RECEPTOR SOMATA IN CONTROL OF FIRING RATE AND EXTRA SPIKE PATTERNING [J].
CALVIN, WH ;
HARTLINE, DK .
JOURNAL OF NEUROPHYSIOLOGY, 1977, 40 (01) :106-118
[9]  
Cheeseman P.C., 1996, ADV KNOWLEDGE DISCOV, V180, P153, DOI https://doi.org/10.5555/257938.257954
[10]   Oscillatory coupling of hippocampal pyramidal cells and interneurons in the behaving rat [J].
Csicsvari, J ;
Hirase, H ;
Czurkó, A ;
Mamiya, A ;
Buzsáki, G .
JOURNAL OF NEUROSCIENCE, 1999, 19 (01) :274-287