Quantum stochastic motion in complex space

被引:8
作者
Wang, MS [1 ]
机构
[1] Natl Cent Univ, Dept Phys, Chungli 320, Taiwan
[2] Natl Cent Univ, Ctr Complex Syst, Chungli 320, Taiwan
来源
PHYSICAL REVIEW A | 1998年 / 57卷 / 03期
关键词
D O I
10.1103/PhysRevA.57.1565
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We show that a quantum system may be associated with a backward stochastic process in complex configuration space when the so-called weak value of the position operator is interpreted as a conditional expectation value. The quantum-mechanical expectation values of the position, momentum, angular momentum, and energy are shown to be the weighted averages of the corresponding quantities for the stochastic process. Moreover, the stochastic trajectory is shown to reduce to the correct classical trajectory in the Limit where the de Broglie wavelength vanishes. [S1050-2947(98)03003-0].
引用
收藏
页码:1565 / 1571
页数:7
相关论文
共 16 条
[1]   HOW THE RESULT OF A MEASUREMENT OF A COMPONENT OF THE SPIN OF A SPIN-1/2 PARTICLE CAN TURN OUT TO BE 100 [J].
AHARONOV, Y ;
ALBERT, DZ ;
VAIDMAN, L .
PHYSICAL REVIEW LETTERS, 1988, 60 (14) :1351-1354
[2]   PROPERTIES OF A QUANTUM SYSTEM DURING THE TIME INTERVAL BETWEEN 2 MEASUREMENTS [J].
AHARONOV, Y ;
VAIDMAN, L .
PHYSICAL REVIEW A, 1990, 41 (01) :11-20
[3]   POSITION-MOMENTUM UNCERTAINTY RELATIONS IN STOCHASTIC MECHANICS [J].
DEFALCO, D ;
DEMARTINO, S ;
DESIENA, S .
PHYSICAL REVIEW LETTERS, 1982, 49 (03) :181-183
[4]   STRONGER FORM FOR POSITION-MOMENTUM UNCERTAINTY RELATION [J].
DELAPENA.L ;
CETTO, AM .
PHYSICS LETTERS A, 1972, A 39 (01) :65-&
[5]  
Gardiner C. W., 1985, HDB STOCHASTIC METHO, V3
[6]   UNCERTAINTY RELATIONS IN STOCHASTIC MECHANICS [J].
GOLIN, S .
JOURNAL OF MATHEMATICAL PHYSICS, 1985, 26 (11) :2781-2783
[7]   STRUCTURAL ASPECTS OF STOCHASTIC MECHANICS AND STOCHASTIC FIELD-THEORY [J].
GUERRA, F .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 1981, 77 (03) :263-312
[8]   NOTE ON RELATIVISTIC MARKOV-PROCESSES [J].
GUERRA, F ;
RUGGIERO, P .
LETTERE AL NUOVO CIMENTO, 1978, 23 (15) :529-534
[9]   DERIVATION OF SCHRODINGER EQUATION FROM NEWTONIAN MECHANICS [J].
NELSON, E .
PHYSICAL REVIEW, 1966, 150 (04) :1079-&
[10]  
NELSON E, 1985, QUANTUM FUCTUATIONS