Peroxisome degradation by microautophagy in Pichia pastoris:: Identification of specific steps and morphological intermediates

被引:198
作者
Sakai, Y
Koller, A
Rangell, LK
Keller, GA
Subramani, S
机构
[1] Univ Calif San Diego, Dept Biol, La Jolla, CA 92093 USA
[2] Genentech Inc, Pharmacol Sci, San Francisco, CA 94080 USA
关键词
D O I
10.1083/jcb.141.3.625
中图分类号
Q2 [细胞生物学];
学科分类号
071009 ; 090102 ;
摘要
We used the dye N-(3-triethylammoniumpropyl)-4-(p-diethylaminophenylhexatrienyl) pyridinium dibromide (FM4-64) and a fusion protein, consisting of the green fluorescent protein appended to the peroxisomal targeting signal, Ser-Lys-Leu (SKL), to label the vacuolar membrane and the peroxisomal matrix, respectively, in living Pichia pastoris cells and followed by fluorescence microscopy the morphological and kinetic intermediates in the vacuolar degradation of peroxisomes by microautophagy and macroautophagy. Structures corresponding to the intermediates were also identified by electron microscopy. The kinetics of appearance and disappearance of these intermediates is consistent with a precursor-product relationship between intermediates, which form the basis of a model for microautophagy. Inhibitors affecting different steps of microautophagy did not impair peroxisome delivery to the vacuole via macroautophagy, although inhibition of vacuolar proteases affected the final vacuolar degradation of green fluorescent protein (S65T mutant version [GFP])-SKL via both autophagic pathways. P. pastoris mutants defective in peroxisome microautophagy (pag mutants) were isolated and characterized for the presence or absence of the intermediates. These mutants, comprising 6 complementation groups, support the model for microautophagy. Our studies indicate that the microautophagic degradation of peroxisomes proceeds via specific intermediates, whose generation and/or processing is controlled by PAG gene products, and shed light on the poorly understood phenomenon of peroxisome homeostasis.
引用
收藏
页码:625 / 636
页数:12
相关论文
共 30 条