Temperature Modulates Plant Defense Responses through NB-LRR Proteins

被引:255
作者
Zhu, Ying [1 ]
Qian, Weiqiang [1 ]
Hua, Jian [1 ]
机构
[1] Shanghai Inst Plant Physiol & Ecol, Shanghai, Peoples R China
基金
美国国家科学基金会;
关键词
TOBACCO-MOSAIC-VIRUS; DISEASE RESISTANCE; SALICYLIC-ACID; ARABIDOPSIS-THALIANA; SIGNAL-TRANSDUCTION; CELL-DEATH; ACQUIRED-RESISTANCE; MEDIATED DEFENSE; GENE; THERMOTOLERANCE;
D O I
10.1371/journal.ppat.1000844
中图分类号
Q93 [微生物学];
学科分类号
071005 ; 100705 ;
摘要
An elevated growth temperature often inhibits plant defense responses and renders plants more susceptible to pathogens. However, the molecular mechanisms underlying this modulation are unknown. To genetically dissect this regulation, we isolated mutants that retain disease resistance at a higher growth temperature in Arabidopsis. One such heat-stable mutant results from a point mutation in SNC1, a NB-LRR encoding gene similar to disease resistance (R) genes. Similar mutations introduced into a tobacco R gene, N, confer defense responses at elevated temperature. Thus R genes or R-like genes involved in recognition of pathogen effectors are likely the causal temperature-sensitive component in defense responses. This is further supported by snc1 intragenic suppressors that regained temperature sensitivity in defense responses. In addition, the SNC1 and N proteins had a reduction of nuclear accumulation at elevated temperature, which likely contributes to the inhibition of defense responses. These findings identify a plant temperature sensitive component in disease resistance and provide a potential means to generate plants adapting to a broader temperature range.
引用
收藏
页码:1 / 12
页数:12
相关论文
共 45 条
[1]   RAR1 positively controls steady state levels of barley MLA resistance proteins and enables sufficient MLA6 accumulation for effective resistance [J].
Bieri, S ;
Mauch, S ;
Shen, QH ;
Peart, J ;
Devoto, A ;
Casais, C ;
Ceron, F ;
Schulze, S ;
Steinbiss, HH ;
Shirasu, K ;
Schulze-Lefert, P .
PLANT CELL, 2004, 16 (12) :3480-3495
[2]   Autoimmune response as a mechanism for a Dobzhansky-Muller-type incompatibility syndrome in plants [J].
Bomblies, Kirsten ;
Lempe, Janne ;
Epple, Petra ;
Warthmann, Norman ;
Lanz, Christa ;
Dangl, Jeffery L. ;
Weigel, Detlef .
PLOS BIOLOGY, 2007, 5 (09) :1962-1972
[3]   A novel role for the TIR domain in association with pathogen-derived elicitors [J].
Burch-Smith, Tessa M. ;
Schiff, Michael ;
Caplan, Jeffrey L. ;
Tsao, Jeffrey ;
Czymmek, Kirk ;
Dinesh-Kumar, Savithramma P. .
PLOS BIOLOGY, 2007, 5 (03) :501-514
[4]  
CHENG YT, 2009, PLANT CELL
[5]   Salicylic acid dependent signaling promotes basal thermotolerance but is not essential for acquired thermotolerance in Arabidopsis thaliana [J].
Clarke, SM ;
Mur, LAJ ;
Wood, JE ;
Scott, IM .
PLANT JOURNAL, 2004, 38 (03) :432-447
[6]   Floral dip:: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana [J].
Clough, SJ ;
Bent, AF .
PLANT JOURNAL, 1998, 16 (06) :735-743
[7]   Attenuation of Cf-mediated defense responses at elevated temperatures correlates with a decrease in elicitor-binding sites [J].
de Jong, CF ;
Takken, FLW ;
Cai, XH ;
de Wit, PJGM ;
Joosten, MHAJ .
MOLECULAR PLANT-MICROBE INTERACTIONS, 2002, 15 (10) :1040-1049
[8]  
DROPKIN VH, 1969, PHYTOPATHOLOGY, V59, P1632
[9]   Range and severity of a plant disease increased by global warming [J].
Evans, Neal ;
Baierl, Andreas ;
Semenov, Mikhail A. ;
Gladders, Peter ;
Fitt, Bruce D. L. .
JOURNAL OF THE ROYAL SOCIETY INTERFACE, 2008, 5 (22) :525-531
[10]   Climate change effects on plant disease: Genomes to ecosystems [J].
Garrett, K. A. ;
Dendy, S. P. ;
Frank, E. E. ;
Rouse, M. N. ;
Travers, S. E. .
ANNUAL REVIEW OF PHYTOPATHOLOGY, 2006, 44 :489-509