Combined Role of Water and Surface Chemistry in Reactive Adsorption of Ammonia on Graphite Oxides

被引:40
作者
Seredych, Mykola [1 ]
Bandosz, Teresa J. [1 ]
机构
[1] CUNY, Dept Chem, New York, NY 10031 USA
关键词
ACTIVATED CARBONS; GRAPHENE LAYERS; ACIDITY; OXYGEN; COMPOSITES; REDUCTION; SERIES; FTIR;
D O I
10.1021/la9037217
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Graphite oxide synthesized using the Brodie method was tested for ammonia adsorption after two different levels of drying in dynamic conditions at the ambient temperature. Surface characterization before and alter exposure to ammonia was done using X-ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy, and potentiometric titration. On the surface of the initial materials, besides epoxy, hydroxyl, and carboxylic groups, various amounts of water within the interlayer space arc present. The results showed that ammonia is in within the interlayer space of graphite oxides. Water enhances the amount of ammonia adsorbed via the dissolution and promotes the dissociation of surface functional groups. This enhances formation of ammonium ions. On the other hand. water screens the accessibility of epoxy and -COOH groups for reactions with ammonia and thus limits the amount adsorbed. The retention of ammonia on a partially dried graphite oxide is enhanced not only owing to those reactions but also because of the formation of new adsorption centers as a result of an incorporation of ammonia to the graphene layers.
引用
收藏
页码:5491 / 5498
页数:8
相关论文
共 39 条
[1]   The characterization of activated carbons with oxygen and nitrogen surface groups [J].
Biniak, S ;
Szymanski, G ;
Siedlewski, J ;
Swiatkowski, A .
CARBON, 1997, 35 (12) :1799-1810
[2]   Encapsulation of polyanilines into graphite oxide [J].
Bissessur, R ;
Liu, PKY ;
White, W ;
Scully, SF .
LANGMUIR, 2006, 22 (04) :1729-1734
[3]  
Brodie B., 1860, ANN CHIM PHYS, V59, P466
[4]   Water dynamics in graphite oxide investigated with neutron scattering [J].
Buchsteiner, Alexandra ;
Lerf, Anton ;
Pieper, Joerg .
JOURNAL OF PHYSICAL CHEMISTRY B, 2006, 110 (45) :22328-22338
[5]   UNTERSUCHUNGEN ZUR STRUKTUR DES GRAPHITOXYDS [J].
CLAUSS, A ;
PLASS, R ;
BOEHM, HP ;
HOFMANN, U .
ZEITSCHRIFT FUR ANORGANISCHE UND ALLGEMEINE CHEMIE, 1957, 291 (5-6) :205-220
[6]   XPS XAES STUDY OF CARBON-FIBERS DURING THERMAL ANNEALING UNDER UHV CONDITIONS [J].
DESIMONI, E ;
CASELLA, GI ;
SALVI, AM .
CARBON, 1992, 30 (04) :521-526
[7]   Preparation and characterization of graphene oxide paper [J].
Dikin, Dmitriy A. ;
Stankovich, Sasha ;
Zimney, Eric J. ;
Piner, Richard D. ;
Dommett, Geoffrey H. B. ;
Evmenenko, Guennadi ;
Nguyen, SonBinh T. ;
Ruoff, Rodney S. .
NATURE, 2007, 448 (7152) :457-460
[8]   Direct evidence for atomic defects in graphene layers [J].
Hashimoto, A ;
Suenaga, K ;
Gloter, A ;
Urita, K ;
Iijima, S .
NATURE, 2004, 430 (7002) :870-873
[9]   Thin-film particles of graphite oxide 1: High-yield synthesis and flexibility of the particles [J].
Hirata, M ;
Gotou, T ;
Horiuchi, S ;
Fujiwara, M ;
Ohba, M .
CARBON, 2004, 42 (14) :2929-2937
[10]   The acidic nature and the methylation of graphitoxide. [J].
Hofmann, U ;
Holst, R .
BERICHTE DER DEUTSCHEN CHEMISCHEN GESELLSCHAFT, 1939, 72 :754-771