Natural genetic variation in arabidopsis: Tools, traits and prospects for evolutionary ecology

被引:69
作者
Shindo, Chikako
Bernasconi, Giorgina
Hardtke, Christian S. [1 ]
机构
[1] Univ Lausanne, Dept Plant Mol Biol, CH-1015 Lausanne, Switzerland
[2] Univ Lausanne, Dept Ecol & Evolut, CH-1015 Lausanne, Switzerland
关键词
arabidopsis; natural genetic variation; natural trait variation; QTL mapping; LD mapping; plant development; plant evolution; molecular ecology;
D O I
10.1093/aob/mcl281
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
Background The model plant Arobidopsis thaliana (Arabidopsis) shows a wide range of genetic and trait variation among wild accessions. Because of its unparalleled biological and genomic resources, the potential of Arabidopsis for molecular genetic analysis of this natural variation has increased dramatically in recent years. Scope Advanced genomics has accelerated molecular phylogenetic analysis and gene identification by quantitative trait loci (QTL) mapping and/or association mapping in Arabidopsis. In particular, QTL mapping utilizing natural accessions is now becoming a major strategy of gene isolation, offering an alternative to artificial mutant lines. Furthermore, the genomic information is used by researchers to uncover the signature of natural selection acting on the genes that contribute to phenotypic variation. The evolutionary significance of such genes has been evaluated in traits such as disease resistance and flowering time. However, although molecular hallmarks of selection have been found for the genes in question, a corresponding ecological scenario of adaptive evolution has been difficult to prove. Ecological strategies, including reciprocal transplant experiments and competition experiments. and utilizing near-isogenic lines of alleles of interest will be a powerful tool to measure the relative fitness of phenotypic and/or allelic variants. Conclusions As the plant model organism, Arabidopsis provides a wealth of molecular background information for evolutionary genetics. Because genetic diversity between and within Arabidopsis populations is much higher than anticipated, combining this background information with ecological approaches might well establish Arabidopsis as a model organism for plant evolutionary ecology.
引用
收藏
页码:1043 / 1054
页数:12
相关论文
共 99 条
[1]   POPULATION GENETIC-STRUCTURE AND OUTCROSSING RATE OF ARABIDOPSIS-THALIANA (L) HEYNH [J].
ABBOTT, RJ ;
GOMES, MF .
HEREDITY, 1989, 62 :411-418
[2]  
Al-Shehbaz Ihsan A, 2002, Arabidopsis Book, V1, pe0001, DOI 10.1199/tab.0001
[3]   Naturally occurring variation in Arabidopsis:: an underexploited resource for plant genetics [J].
Alonso-Blanco, C ;
Koornneef, M .
TRENDS IN PLANT SCIENCE, 2000, 5 (01) :22-29
[4]   From phenotypic to molecular polymorphisms involved in naturally occurring variation of plant development [J].
Alonso-Blanco, C ;
Mendez-Vigo, B ;
Koornneef, M .
INTERNATIONAL JOURNAL OF DEVELOPMENTAL BIOLOGY, 2005, 49 (5-6) :717-732
[5]   Genome-wide association mapping in Arabidopsis identifies previously known flowering time and pathogen resistance genes [J].
Aranzana, MJ ;
Kim, S ;
Zhao, KY ;
Bakker, E ;
Horton, M ;
Jakob, K ;
Lister, C ;
Molitor, J ;
Shindo, C ;
Tang, CL ;
Toomajian, C ;
Traw, B ;
Zheng, HG ;
Bergelson, J ;
Dean, C ;
Marjoram, P ;
Nordborg, M .
PLOS GENETICS, 2005, 1 (05) :531-539
[6]   METAANALYSIS - SYNTHESIZING RESEARCH FINDINGS IN ECOLOGY AND EVOLUTION [J].
ARNQVIST, G ;
WOOSTER, D .
TRENDS IN ECOLOGY & EVOLUTION, 1995, 10 (06) :236-240
[7]   A deletion in the PHYD gene of the Arabidopsis Wassilewskija ecotype defines a role for phytochrome D in red/far-red light sensing [J].
Aukerman, MJ ;
Hirschfeld, M ;
Wester, L ;
Weaver, M ;
Clack, T ;
Amasino, RM ;
Sharrock, RA .
PLANT CELL, 1997, 9 (08) :1317-1326
[8]   Distribution of genetic variation within and among local populations of Arabidopsis thaliana over its species range [J].
Bakker, EG ;
Stahl, EA ;
Toomajian, C ;
Nordborg, M ;
Kreitman, M ;
Bergelson, J .
MOLECULAR ECOLOGY, 2006, 15 (05) :1405-1418
[9]   A genome-wide survey of R gene polymorphisms in Arabidopsis [J].
Bakker, Erica G. ;
Toomajian, Christopher ;
Kreitman, Martin ;
Bergelson, Joy .
PLANT CELL, 2006, 18 (08) :1803-1818
[10]   The PHYTOCHROME C photoreceptor gene mediates natural variation in flowering and growth responses of Arabidopsis thaliana [J].
Balasubramanian, Sureshkumar ;
Sureshkumar, Sridevi ;
Agrawal, Mitesh ;
Michael, Todd P. ;
Wessinger, Carrie ;
Maloof, Julin N. ;
Clark, Richard ;
Warthmann, Norman ;
Chory, Joanne ;
Weigel, Detlef .
NATURE GENETICS, 2006, 38 (06) :711-715