Reynolds number dependence of second-order velocity structure functions

被引:32
作者
Antonia, RA [1 ]
Pearson, BR [1 ]
Zhou, T [1 ]
机构
[1] Univ Newcastle, Dept Mech Engn, Newcastle, NSW 2308, Australia
关键词
D O I
10.1063/1.1314339
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
The Reynolds number dependence of measured (and corrected) second-order longitudinal and transverse velocity structure functions is examined by fitting an expression that extends from the smallest dissipative scales to inertial range scales. Results obtained from fitting to data for decaying grid turbulence and on the centerline of turbulent jets indicate an increase, with respect to the Reynolds number, of both longitudinal and transverse scaling exponents. The results should provide a relatively reliable description for the Reynolds number evolution of Kolmogorov-normalized second-order structure functions from viscous to inertial range scales. (C) 2000 American Institute of Physics. [S1070-6631(00)51012-5].
引用
收藏
页码:3000 / 3006
页数:7
相关论文
共 32 条
[1]   HIGH-ORDER VELOCITY STRUCTURE FUNCTIONS IN TURBULENT SHEAR FLOWS [J].
ANSELMET, F ;
GAGNE, Y ;
HOPFINGER, EJ ;
ANTONIA, RA .
JOURNAL OF FLUID MECHANICS, 1984, 140 (MAR) :63-89
[2]   Lateral vorticity measurements in a turbulent wake [J].
Antonia, RA ;
Zhu, Y ;
Shafi, HS .
JOURNAL OF FLUID MECHANICS, 1996, 323 :173-200
[3]   Scaling exponents for turbulent velocity and temperature increments [J].
Antonia, RA ;
Pearson, BR .
EUROPHYSICS LETTERS, 1997, 40 (02) :123-128
[4]  
Antonia RA, 1998, FLUID MEC A, V46, P227
[5]   Structure functions in turbulence, in various flow configurations, at Reynolds number between 30 and 5000, using extended self-similarity [J].
Arneodo, A ;
Baudet, C ;
Belin, F ;
Benzi, R ;
Castaing, B ;
Chabaud, B ;
Chavarria, R ;
Ciliberto, S ;
Camussi, R ;
Chilla, F ;
Dubrulle, B ;
Gagne, Y ;
Hebral, B ;
Herweijer, J ;
Marchand, M ;
Maurer, J ;
Muzy, JF ;
Naert, A ;
Noullez, A ;
Peinke, J ;
Roux, F ;
Tabeling, P ;
vandeWater, W ;
Willaime, H .
EUROPHYSICS LETTERS, 1996, 34 (06) :411-416
[6]   Comment on the paper "On the scaling of three-dimensional homogeneous and isotropic turbulence" by Benzi et al. [J].
Barenblatt, GI ;
Chorin, AJ ;
Prostokishin, VM .
PHYSICA D, 1999, 127 (1-2) :105-110
[7]   PRESSURE FLUCTUATIONS IN ISOTROPIC TURBULENCE [J].
BATCHELOR, GK .
PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 1951, 47 (02) :359-374
[8]   EXTENDED SELF-SIMILARITY IN THE DISSIPATION RANGE OF FULLY-DEVELOPED TURBULENCE [J].
BENZI, R ;
CILIBERTO, S ;
BAUDET, C ;
CHAVARRIA, GR ;
TRIPICCIONE, R .
EUROPHYSICS LETTERS, 1993, 24 (04) :275-279
[9]   On the scaling of three-dimensional homogeneous and isotropic turbulence - Reply [J].
Benzi, R ;
Ciliberto, S ;
Baudet, C ;
Ruiz-Chavarria, G .
PHYSICA D-NONLINEAR PHENOMENA, 1999, 127 (1-2) :111-112
[10]   FINE-SCALE STRUCTURE OF TURBULENT VELOCITY-FIELD [J].
CHAMPAGNE, FH .
JOURNAL OF FLUID MECHANICS, 1978, 86 (MAY) :67-108