Pairwise fusion matrix for combining classifiers

被引:36
作者
Ko, Albert H. R.
Sabourin, Robert
Britto, Alceu de Souza, Jr.
Oliveira, Luiz
机构
[1] Univ Quebec, LIVIA, Ecole Technol Super, Montreal, PQ H3C 1K3, Canada
[2] Pontif Catholic Univ Parana, PPGIA, BR-80215901 Curitiba, Parana, Brazil
基金
加拿大自然科学与工程研究理事会;
关键词
fusion function; combining classifiers; confusion matrix; pattern recognition; majority voting; ensemble of learning machines;
D O I
10.1016/j.patcog.2007.01.031
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Various fusion functions for classifier combination have been designed to optimize the results of ensembles of classifiers (EoC). We propose a pairwise fusion matrix (PFM) transformation, which produces reliable probabilities for the use of classifier combination and can be amalgamated with most existent fusion functions for combining classifiers. The PFM requires only crisp class label outputs from classifiers, and is suitable for high-class problems or problems with few training samples. Experimental results suggest that the performance of a PFM can be a notch above that of the simple majority voting rule (MAJ), and a PFM can work on problems where a behavior-knowledge space (BKS) might not be applicable. (C) 2007 Pattern Recognition Society. Published by Elsevier Ltd. All rights reserved.
引用
收藏
页码:2198 / 2210
页数:13
相关论文
共 36 条
[1]  
Afifi A.A., 1979, Statistical Analysis: A Computer-Oriented Approach
[2]  
Banfield RE, 2003, LECT NOTES COMPUT SC, V2709, P306
[3]  
Duin RPW, 2002, INT C PATT RECOG, P765, DOI 10.1109/ICPR.2002.1048415
[4]  
DUIN RPW, 2003, PATTERN RECOGNITION
[5]  
Fleiss JL, 2013, STAT METHODS RATES P
[6]   Design of effective neural network ensembles for image classification purposes [J].
Giacinto, G ;
Roli, F .
IMAGE AND VISION COMPUTING, 2001, 19 (9-10) :699-707
[7]  
Grove AJ, 1998, FIFTEENTH NATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE (AAAI-98) AND TENTH CONFERENCE ON INNOVATIVE APPLICATIONS OF ARTIFICAL INTELLIGENCE (IAAI-98) - PROCEEDINGS, P692
[8]  
Hansen L. K., 1997, Open Systems & Information Dynamics, V4, P159, DOI 10.1023/A:1009643503022
[9]   NEURAL NETWORK ENSEMBLES [J].
HANSEN, LK ;
SALAMON, P .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 1990, 12 (10) :993-1001
[10]  
Ho TK, 1998, IEEE T PATTERN ANAL, V20, P832, DOI 10.1109/34.709601