In a multi-bed pressure swing adsorption (PSA) process,cycle steps with gas flow transferring from one bed to another such as equalization, purge, etc. are generally practiced to enhance the product recovery. However, if the flows for the connected beds in these steps are not balanced, the PSA process may not operate in a symmetrical manner. In the modeling of the PSA process, most of the simulations consider only one bed and assume that the rest of the beds would behave in a same way. In order to assess the impact of bed symmetry on the PSA performance, a new PSA model capable of studying bed symmetry in a two-bed system is developed. Experimental results from this paper show that uneven equalization flow can result in a lower product purity and a peculiar purity curve at different equalization levels. This phenomenon can be successfully predicted by this model. Simulation results also show that in large-scale PSA units, asymmetrical operation carl cause drastically different temperature profiles in different adsorbers and hence a much lower performance. This paper demonstrates the importance of maintaining operation symmetry in PSA processes.