Plasma-edge gradients in L-mode and ELM-free H-mode JET plasmas

被引:24
作者
Breger, P [1 ]
Flewin, C
Zastrow, KD
Davies, SJ
Hawkes, NC
Konig, RWT
Pietrzyk, ZA
Porte, L
Summers, DDR
von Hellermann, MG
机构
[1] Jet Joint Undertaking, Abingdon OX14 3EA, Oxon, England
[2] UCL, London WC1E 6BT, England
[3] UKAEA Euratom Fus Assoc, Abingdon OX14 3DB, Oxon, England
[4] Ecole Polytech Fed Lausanne, CRPP, CH-1015 Lausanne, Switzerland
[5] Univ Calif Los Angeles, Dept Elect Engn, Los Angeles, CA 90095 USA
关键词
D O I
10.1088/0741-3335/40/3/001
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
Experimental plasma-edge gradients in JET during the edge-localized-mode (ELM) free H-mode are examined for evidence of the presence and location of the transport barrier region inside the magnetic separatrix. High spatial resolution data in electron density is available in-and outside the separatrix from an Li-beam diagnostic, and in electron temperature inside the separatrix from an ECE diagnostic, while outside the separatrix, a reciprocating probe provides electron density and temperature data in the scrape-off layer. Ion temperatures and densities are measured using an edge charge-exchange diagnostic. A comparison of observed widths and gradients of this edge region with each other and with theoretical expectations is made. Measurements show that ions and electrons form different barrier regions. Furthermore, the electron temperature barrier width (3-4 cm) is about twice that of electron density, in conflict with existing scaling laws. Suitable parametrization of the edge data enables an electron pressure gradient to be deduced for the first time at JET. It rises during the ELM-free phase to reach only about half the marginal pressure gradient expected from ballooning stability before the first ELM. Subsequent type I ELMs occur on a pressure gradient contour roughly consistent with both a constant barrier width model and a ballooning mode envelope model.
引用
收藏
页码:347 / 359
页数:13
相关论文
共 20 条
  • [1] Physics of L and H mode confinement in JET
    Bak, P
    Balet, B
    Cherubini, A
    Cordey, JG
    Deliyanakis, N
    Erba, M
    Parail, VV
    Porte, L
    Springmann, EM
    Taroni, A
    Vayakis, G
    [J]. NUCLEAR FUSION, 1996, 36 (03) : 321 - 333
  • [2] CONNOR JW, 1997, 9741 UKAEA FUS PLASM
  • [3] DAVIES S, 1994, B AM PHYS SOC, V39, P1565
  • [4] GROEBNER R, 1996, B AM PHYS SOC, V41, P1573
  • [5] HUYSMANS GTA, 1991, P CP90 C COMP PHYS P, P371
  • [6] MODEL OF L-MODE TO H-MODE TRANSITION IN TOKAMAK
    ITOH, SI
    ITOH, K
    [J]. PHYSICAL REVIEW LETTERS, 1988, 60 (22) : 2276 - 2279
  • [7] JANESCHITZ G, 1997, 24 EPS C CONTR FUS P
  • [8] KAUFMANN M, 1996, 16 IAEA FUS EN C MON, V1, P79
  • [9] QUANTITATIVE PREDICTIONS OF TOKAMAK ENERGY CONFINEMENT FROM FIRST-PRINCIPLES SIMULATIONS WITH KINETIC EFFECTS
    KOTSCHENREUTHER, M
    DORLAND, W
    BEER, MA
    HAMMETT, GW
    [J]. PHYSICS OF PLASMAS, 1995, 2 (06) : 2381 - 2389
  • [10] Kotschenreuther M., 1997, P 16 C PLASM PHYS CO, V2, P371