Counting lattice points by means of the residue theorem

被引:22
作者
Beck, M [1 ]
机构
[1] SUNY Binghamton, Dept Math Sci, Binghamton, NY 13902 USA
关键词
lattice point enumeration in polytopes; Ehrhart polynomial; Dedekind sums;
D O I
10.1023/A:1009853104418
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We use the residue theorem to derive an expression for the number of lattice points in a dilated n-dimensional tetrahedron with vertices at lattice points on each coordinate axis and the origin. This expression is known as the Ehrhart polynomial. We show that it is a polynomial in t, where t is the integral dilation parameter. We prove the Ehrhart-Macdonald reciprocity law for these tetrahedra, relating the Ehrhart polynomials of the interior and the closure of the tetrahedra. To illustrate our method, we compute the Ehrhart coefficient for codimension 2. Finally, we show how our ideas can be used to compute the Ehrhart polynomial for an arbitrary convex lattice polytope.
引用
收藏
页码:299 / 310
页数:12
相关论文
共 14 条
[1]   COMPUTING THE EHRHART POLYNOMIAL OF A CONVEX LATTICE POLYTOPE [J].
BARVINOK, AI .
DISCRETE & COMPUTATIONAL GEOMETRY, 1994, 12 (01) :35-48
[2]   The reciprocity law for dedekind sums via the constant Ehrhart coefficient [J].
Beck, M .
AMERICAN MATHEMATICAL MONTHLY, 1999, 106 (05) :459-462
[3]  
BECK M, UNPUB FROBENIUS PROB
[4]   Residue formulae, vector partition functions and lattice points in rational polytopes [J].
Brion, M ;
Vergne, M .
JOURNAL OF THE AMERICAN MATHEMATICAL SOCIETY, 1997, 10 (04) :797-833
[5]   The Ehrhart polynomial of a lattice polytope [J].
Diaz, R ;
Robins, S .
ANNALS OF MATHEMATICS, 1997, 145 (03) :503-518
[6]  
EHRHART E, 1967, J REINE ANGEW MATH, V227, P25
[7]  
KANTOR JM, 1993, CR ACAD SCI I-MATH, V317, P501
[8]  
Khovanskii A.G., 1993, ST PETERSBURG MATH J, V4, P789
[9]   POLYNOMIALS ASSOCIATED WITH FINITE CELL-COMPLEXES [J].
MACDONALD, IG .
JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 1971, 4 (JUL) :181-+
[10]   LATTICE INVARIANT VALUATIONS ON RATIONAL POLYTOPES [J].
MCMULLEN, P .
ARCHIV DER MATHEMATIK, 1978, 31 (05) :509-516