Comparative analysis of 8-oxoG:C, 8-oxoG:A, A:C and C:C DNA repair in extracts from wild type or 8-oxoG DNA glycosylase deficient mammalian and bacterial cells

被引:18
作者
Dantzer, F
Bjorås, M
Luna, L
Klungland, A
Seeberg, E [1 ]
机构
[1] Univ Oslo, Ctr Mol Biol & Neurosci, Rikshosp, N-0027 Oslo, Norway
[2] Univ Oslo, Inst Med Microbiol, Rikshosp, N-0027 Oslo, Norway
关键词
8-oxoguanine; DNA glycosylase; base excision repair; OGG1-deficient cell extracts; Fpg-deficient cell extracts;
D O I
10.1016/S1568-7864(03)00041-7
中图分类号
Q3 [遗传学];
学科分类号
071007 ; 090102 ;
摘要
We have investigated repair of DNA containing 8-oxoguanine and certain mismatches in cell-free extracts from mouse embryonic fibroblasts (MEFs) using a plasmid substrate with a single lesion at a defined position. Repair synthesis was monitored in a small restriction fragment with different size single strands in order to follow the fate of repair reactions in both strands at the same time. An important part of the study was to assess the role of OGG1 in various repair reactions and the experiments were carried out with extracts from mouse embryonic fibroblasts diploid for a mogg1 deletion (Ogg1(-/-)) as well as wild type. In wild type, DNA containing 8-oxoG:C was repaired in the expected fashion predominantly through short-patch repair. Overall repair was reduced to 20% in the Ogg1(-/-) extracts and to 40% if only long-patch repair was considered. The 8-oxoG:A pair was processed similarly in wild type and Ogg1(-/-) extracts and repair synthesis at A as well as at 8-oxoG could be demonstrated, however, to the same extent in Ogg1(-/-) and wild type for both strands. Extracts from Ogg1(-/-) behaved normally in the correction of A:C and C:C mismatches, with a strong bias for correction of A for A:C and no significant strand discrimination for CC Similar experiments with extracts from Escherichia coli showed a 50% reduction in the repair of 8-oxoG:C in fpg extracts and an increase to 50% above wild type in mutY. These results show that the mouse OGG1 is the major enzyme for 8-oxoG repair in the MEF cells and does not participate in mismatch repair of A:C or C:C. Furthermore, 8-oxoG opposite A appears to be repaired by a two-step repair pathway with sequential removal of A and 8-oxoG mediated by enzymes different from OGG1. (C) 2003 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:707 / 718
页数:12
相关论文
共 46 条
[1]   A novel human DNA glycosylase that removes oxidative DNA damage and is homologous to Escherichia coli endonuclease VIII [J].
Bandaru, V ;
Sunkara, S ;
Wallace, SS ;
Bond, JP .
DNA REPAIR, 2002, 1 (07) :517-529
[2]   Reciprocal "flipping" underlies substrate recognition and catalytic activation by the human 8-oxo-guanine DNA glycosylase [J].
Bjorås, M ;
Seeberg, E ;
Luna, L ;
Pearl, LH ;
Barrett, TE .
JOURNAL OF MOLECULAR BIOLOGY, 2002, 317 (02) :171-177
[3]   Opposite base-dependent reactions of a human base excision repair enzyme on DNA containing 7,8-dihydro-8-oxoguanine and abasic sites [J].
Bjoras, M ;
Luna, L ;
Johnson, B ;
Hoff, E ;
Haug, T ;
Rognes, T ;
Seeberg, E .
EMBO JOURNAL, 1997, 16 (20) :6314-6322
[4]   A novel role for Escherichia coli endonuclease VIII in prevention of spontaneous G→T transversions [J].
Blaisdell, JO ;
Hatahet, Z ;
Wallace, SS .
JOURNAL OF BACTERIOLOGY, 1999, 181 (20) :6396-6402
[5]   FORMAMIDOPYRIMIDINE-DNA GLYCOSYLASE OF ESCHERICHIA-COLI - CLONING AND SEQUENCING OF THE FPG STRUCTURAL GENE AND OVERPRODUCTION OF THE PROTEIN [J].
BOITEUX, S ;
OCONNOR, TR ;
LAVAL, J .
EMBO JOURNAL, 1987, 6 (10) :3177-3183
[6]   Structural basis for recognition and repair of the endogenous mutagen 8-oxoguanine in DNA [J].
Bruner, SD ;
Norman, DPG ;
Verdine, GL .
NATURE, 2000, 403 (6772) :859-866
[7]   Comparative repair of the endogenous lesions 8-oxo-7,8-dihydroguanine (8-oxoG), uracil and abasic site by mammalian cell extracts: 8-oxoG is poorly repaired by human cell extracts [J].
Cappelli, E ;
Degan, P ;
Frosina, G .
CARCINOGENESIS, 2000, 21 (06) :1135-1141
[8]  
CHENG KC, 1992, J BIOL CHEM, V267, P166
[9]   Base excision repair is impaired in mammalian cells lacking poly(ADP-ribose) polymerase-1 [J].
Dantzer, F ;
de la Rubia, G ;
Murcia, JMD ;
Hostomsky, Z ;
de Murcia, G ;
Schreiber, V .
BIOCHEMISTRY, 2000, 39 (25) :7559-7569
[10]   Repair pathways for processing of 8-oxoguanine in DNA by mammalian cell extracts [J].
Dianov, G ;
Bischoff, C ;
Piotrowski, J ;
Bohr, VA .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1998, 273 (50) :33811-33816