Four genes of Medicago truncatula controlling components of a nod factor transduction pathway

被引:395
作者
Catoira, R
Galera, C
de Billy, F
Penmetsa, RV
Journet, EP
Maillet, F
Rosenberg, C
Cook, D
Gough, C
Dénarié, J
机构
[1] INRA, CNRS, Lab Biol Mol Relat Plantes Microorgan, UMR215, F-31326 Castanet Tolosan, France
[2] Texas A&M Univ, Crop Biotechnol Ctr, Dept Plant Pathol & Microbiol, College Stn, TX 77843 USA
关键词
D O I
10.1105/tpc.12.9.1647
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Rhizobium nodulation (Nod) factors are lipo-chitooligosaccharides that act as symbiotic signals, eliciting several key developmental responses in the roots of legume hosts. Using nodulation-defective mutants of Medicago truncatola, we have started to dissect the genetic control of Nod factor transduction. Mutants in four genes (DMI1, DMI2, DMI3, and NSP) were pleiotropically affected in Nod factor responses, indicating that these genes are required for a Nod factor-activated signal transduction pathway that leads to symbiotic responses such as root hair deformations, expressions of nodulin genes, and cortical cell divisions. Mutant analysis also provides evidence that Nod factors have a dual effect on the growth of root hair: inhibition of endogenous (plant) tip growth, and elicitation of a novel tip growth dependent on (bacterial) Nod factors. dmi1, dmi2, and dmi3 mutants are also unable to establish a symbiotic association with endomycorrhizal fungi, indicating that there are at least three common steps to nodulation and endomycorrhization in M. truncatula and providing further evidence for a common signaling pathway between nodulation and mycorrhization.
引用
收藏
页码:1647 / 1665
页数:19
相关论文
共 92 条
[1]   Endomycorrhizae and rhizobial Nod factors both require SYM8 to induce the expression of the early nodulin genes PsENOD5 and PsENOD12A [J].
Albrecht, C ;
Geurts, R ;
Lapeyrie, F ;
Bisseling, T .
PLANT JOURNAL, 1998, 15 (05) :605-614
[2]   Legume nodulation and mycorrhizae formation two extremes in host specificity meet [J].
Albrecht, C ;
Geurts, R ;
Bisseling, T .
EMBO JOURNAL, 1999, 18 (02) :281-288
[3]  
[Anonymous], 1994, ARABIDOPSIS
[4]   RHIZOBIUM-MELILOTI LIPOOLIGOSACCHARIDE NODULATION FACTORS - DIFFERENT STRUCTURAL REQUIREMENTS FOR BACTERIAL ENTRY INTO TARGET ROOT HAIR-CELLS AND INDUCTION OF PLANT SYMBIOTIC DEVELOPMENTAL RESPONSES [J].
ARDOUREL, M ;
DEMONT, N ;
DEBELLE, FD ;
MAILLET, F ;
DEBILLY, F ;
PROME, JC ;
DENARIE, J ;
TRUCHET, G .
PLANT CELL, 1994, 6 (10) :1357-1374
[5]   ISOLATION AND CHARACTERIZATION OF CDNA AND GENOMIC CLONES OF MSENOD40 - TRANSCRIPTS ARE DETECTED IN MERISTEMATIC CELLS OF ALFALFA [J].
ASAD, S ;
FANG, YW ;
WYCOFF, KL ;
HIRSCH, AM .
PROTOPLASMA, 1994, 183 (1-4) :10-23
[6]  
Barker D. G., 1990, Plant Molecular Biology Reporter, V8, P40, DOI 10.1007/BF02668879
[7]   NITROGEN-FIXATION (C2H2 REDUCTION) BY MEDICAGO NODULES AND BACTEROIDS UNDER SODIUM-CHLORIDE STRESS [J].
BEKKI, A ;
TRINCHANT, JC ;
RIGAUD, J .
PHYSIOLOGIA PLANTARUM, 1987, 71 (01) :61-67
[8]   Root hair growth in Arabidopsis thaliana is directed by calcium and an endogenous polarity [J].
Bibikova, TN ;
Zhigilei, A ;
Gilroy, S .
PLANTA, 1997, 203 (04) :495-505
[9]   INTERACTIONS BETWEEN 3 ALFALFA NODULATION GENOTYPES AND 2 GLOMUS SPECIES [J].
BRADBURY, SM ;
PETERSON, RL ;
BOWLEY, SR .
NEW PHYTOLOGIST, 1991, 119 (01) :115-120
[10]   Rhizobium Nod factors induce increases in intracellular free calcium and extracellular calcium influxes in bean root hairs [J].
Cárdenas, L ;
Feijó, JA ;
Kunkel, JG ;
Sánchez, F ;
Holdaway-Clarke, T ;
Hepler, PK ;
Quinto, C .
PLANT JOURNAL, 1999, 19 (03) :347-352