Data classification and parameter estimation for the identification of piecewise affine models

被引:20
作者
Bemporad, A [1 ]
Garulli, A [1 ]
Paoletti, S [1 ]
Vicino, A [1 ]
机构
[1] Univ Siena, Dipartimento Ingn Informaz, I-53100 Siena, Italy
来源
2004 43RD IEEE CONFERENCE ON DECISION AND CONTROL (CDC), VOLS 1-5 | 2004年
关键词
D O I
10.1109/CDC.2004.1428600
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper proposes a three-stage procedure for parametric identification of PieceWise affine AutoRegressive eXogenous (PWARX) models. The first stage simultaneously classifies the data points and estimates the number of submodels and the corresponding parameters by solving the MIN PFS problem (Partition into a MINimum Number of Feasible Sub- systems) for a set of linear complementary inequalities derived from input-output data. Then, a refinement procedure reduces misclassifications and improves parameter estimates. The last stage determines a polyhedral partition of the regressor set via two-class or multi-class linear separation techniques. As a main feature, the algorithm imposes that the identification error is bounded by a fixed quantity delta. Such a bound is a useful tuning parameter to trade off between quality of fit and model complexity. Ideas for efficiently addressing the MIN PFS problem, and for improving data classification are also discussed in the paper. The performance of the proposed identification procedure is demonstrated on experimental data from an electronic component placement process in a pick-and-place machine.
引用
收藏
页码:20 / 25
页数:6
相关论文
共 20 条
[1]   The MIN PFS problem and piecewise linear model estimation [J].
Amaldi, E ;
Mattavelli, M .
DISCRETE APPLIED MATHEMATICS, 2002, 118 (1-2) :115-143
[2]   Observability and controllability of piecewise affine and hybrid systems [J].
Bemporad, A ;
Ferrari-Trecate, G ;
Morari, M .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2000, 45 (10) :1864-1876
[3]  
BEMPORAD A, 2003, SER LECT NOTES COMPU, P97
[4]  
Bennett K. P., 1994, OPTIMIZATION METHODS, V3, P27, DOI DOI 10.1080/10556789408805554
[5]  
BENNETT KP, 1992, OPTIMIZATION METHODS, V1, P23, DOI DOI 10.1080/10556789208805504
[6]   Multicategory classification by support vector machines [J].
Bredensteiner, EJ ;
Bennett, KP .
COMPUTATIONAL OPTIMIZATION AND APPLICATIONS, 1999, 12 (1-3) :53-79
[7]  
CORTES C, 1995, MACH LEARN, V20, P273, DOI 10.1023/A:1022627411411
[8]   A clustering technique for the identification of piecewise affine systems [J].
Ferrari-Trecate, G ;
Muselli, M ;
Liberati, D ;
Morari, M .
AUTOMATICA, 2003, 39 (02) :205-217
[9]   Equivalence of hybrid dynamical models [J].
Heemels, WPMH ;
De Schutter, B ;
Bemporad, A .
AUTOMATICA, 2001, 37 (07) :1085-1091
[10]   Data-based hybrid modelling of the component placement process in pick-and-place machines [J].
Juloski, AL ;
Heemels, WPMH ;
Ferrari-Trecate, G .
CONTROL ENGINEERING PRACTICE, 2004, 12 (10) :1241-1252