Performance comparison of self-adaptive and adaptive differential evolution algorithms

被引:180
作者
Brest, Janez [1 ]
Boskovic, Borko [1 ]
Greiner, Saso [1 ]
Zumer, Viljem [1 ]
Maucec, Mirjam Sepesy [1 ]
机构
[1] Univ Maribor, Fac Elect Engn & Comp Sci, SLO-2000 Maribor, Slovenia
关键词
differential evolution; control parameter; fitness function; optimization; self-adaptation;
D O I
10.1007/s00500-006-0124-0
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Differential evolution (DE) has been shown to be a simple, yet powerful, evolutionary algorithm for global optimization for many real problems. Adaptation, especially self-adaptation, has been found to be highly beneficial for adjusting control parameters, especially when done without any user interaction. This paper presents differential evolution algorithms, which use different adaptive or self-adaptive mechanisms applied to the control parameters. Detailed performance comparisons of these algorithms on the benchmark functions are outlined.
引用
收藏
页码:617 / 629
页数:13
相关论文
共 25 条
[1]   Population set-based global optimization algorithms:: some modifications and numerical studies [J].
Ali, MM ;
Törn, A .
COMPUTERS & OPERATIONS RESEARCH, 2004, 31 (10) :1703-1725
[2]   Adaptive business intelligence based on evolution strategies:: some application examples of self-adaptive software [J].
Bäck, T .
INFORMATION SCIENCES, 2002, 148 (1-4) :113-121
[3]  
Back T., 1997, Handbook of evolutionary computation
[4]  
BREST J, 2006, IN PRESS IEEE T EVOL
[5]  
De Jong K. A., 1975, ANAL BEHAV CLASS GEN
[6]  
DINOLA A, 2001, SERIES ADV SOFT COMP
[7]  
Eiben A.E., 2015, Introduction to Evolutionary Computing
[8]   Parameter control in evolutionary algorithms [J].
Eiben, AE ;
Hinterding, R ;
Michalewicz, Z .
IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, 1999, 3 (02) :124-141
[9]  
Gamperle R., 2002, Adv Intell Syst, Fuzzy Syst, Evolut Comput, V10, P293
[10]  
Hansen N, 2005, Technical report