The Hog1 mitogen-activated protein kinase is essential in the oxidative stress response and chlamydospore formation in Candida albicans

被引:257
作者
Alonso-Monge, R [1 ]
Navarro-García, F [1 ]
Román, E [1 ]
Negredo, AI [1 ]
Eisman, B [1 ]
Nombela, C [1 ]
Pla, J [1 ]
机构
[1] Univ Complutense Madrid, Fac Farm, Dept Microbiol 2, E-28040 Madrid, Spain
关键词
D O I
10.1128/EC.2.2.351-361.2003
中图分类号
Q93 [微生物学];
学科分类号
071005 ; 100705 ;
摘要
Candida albicans mutants with mutations in mitogen-activated protein (MAP) kinase HOG1 displayed an increased sensitivity to agents producing reactive oxygen species, such as oxidants (menadione, hydrogen peroxide, or potassium superoxide), and UV light. Consistent with this finding, C. albicans Hog1 was activated not only in response to an increase in external osmollarity, as happens with its Saccharomyces cerevisiae homollogue, but also in response to hydrogen peroxide. The Hog1-mediated response to oxidative stress was different from that of transcription factor Capl, the homollogue of S. cerevisiae Yap1, as shown by the different sensitivities to oxidants and the kinetics of cell death of cap1Delta, hog1, and hog1 cap1Delta mutants. Deletion of CAP1 did not influence the level of Hog1 phosphorylation, and deletion of HOG1 did not affect Capl nuclear localization. Moreover, we show that the HOG1 gene plays a role in chlamydospore formation, another oxygen-related morphogenetic event, as demonstrated by the fact that hog1 cells were unable to generate these thick-walled structures in several media through a mechanism different from that of the EFG1 regulator. This is the first demonstration of the role of the Hog1-mediated MAP kinase pathway in resistance to oxidative stress in pathogenic fungi, and it allows us to propose a molecular model for the oxidative stress response in C. albicans.
引用
收藏
页码:351 / 361
页数:11
相关论文
共 73 条
[1]   The bZip transcription factor Cap1p is involved in multidrug resistance and oxidative stress response in Candida albicans [J].
Alarco, AM ;
Raymond, M .
JOURNAL OF BACTERIOLOGY, 1999, 181 (03) :700-708
[2]   AP1-mediated multidrug resistance in Saccharomyces cerevisiae requires FLR1 encoding a transporter of the major facilitator superfamily [J].
Alarco, AM ;
Balan, I ;
Talibi, D ;
Mainville, N ;
Raymond, M .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1997, 272 (31) :19304-19313
[3]   Role of the mitogen-activated protein kinase hog1p in morphogenesis and virulence of Candida albicans [J].
Alonso-Monge, R ;
Navarro-García, F ;
Molero, G ;
Diez-Orejas, R ;
Gustin, M ;
Pla, J ;
Sánchez, M ;
Nombela, C .
JOURNAL OF BACTERIOLOGY, 1999, 181 (10) :3058-3068
[4]  
[Anonymous], OXIDATIVE STRESS MOL
[5]  
BOSSIER P, 1993, J BIOL CHEM, V268, P23640
[6]   AN OSMOSENSING SIGNAL TRANSDUCTION PATHWAY IN YEAST [J].
BREWSTER, JL ;
DEVALOIR, T ;
DWYER, ND ;
WINTER, E ;
GUSTIN, MC .
SCIENCE, 1993, 259 (5102) :1760-1763
[7]   PARALLEL SIGNAL-PROCESSING AMONG MAMMALIAN MAPKS [J].
CANO, E ;
MAHADEVAN, LC .
TRENDS IN BIOCHEMICAL SCIENCES, 1995, 20 (03) :117-122
[8]  
Chaturvedi V, 1996, J IMMUNOL, V156, P3836
[9]   The roles of glutathione and antioxidant enzymes in menadione-induced oxidative stress [J].
Chiou, TJ ;
Tzeng, WF .
TOXICOLOGY, 2000, 154 (1-3) :75-84
[10]   OXYR, A POSITIVE REGULATOR OF HYDROGEN PEROXIDE-INDUCIBLE GENES IN ESCHERICHIA-COLI AND SALMONELLA-TYPHIMURIUM, IS HOMOLOGOUS TO A FAMILY OF BACTERIAL REGULATORY PROTEINS [J].
CHRISTMAN, MF ;
STORZ, G ;
AMES, BN .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1989, 86 (10) :3484-3488