Glutathione S-transferase interacting with far-red insensitive 219 is involved in phytochrome A-mediated signaling in Arabidopsis

被引:83
作者
Chen, Ing-Chien [1 ]
Huang, I-Ching [1 ]
Liu, Ming-Jung [1 ]
Wang, Zhi-Gong [1 ]
Chung, Shu-Shiang [1 ]
Hsieh, Hsu-Liang [1 ]
机构
[1] Natl Taiwan Univ, Inst Plant Biol, Coll Life Sci, Taipei 106, Taiwan
关键词
D O I
10.1104/pp.106.094185
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
Far-red (FR) insensitive 219 (FIN219) was previously shown to be involved in phytochrome A-mediated FR light signaling. To further understand its function and regulatory relation with other light-signaling components, a yeast two-hybrid approach was used to isolate FIN219-interacting partners. Here, we demonstrate that FIN219-interacting protein 1 (FIP1) interacts with FIN219 in vitro and in vivo and is composed of 217 amino acids that belong to the tau class of the large glutathione S-transferase gene family. FIP1 was further shown to have glutathione S-transferase activity. The gain of function and partial loss of function of FIP1 resulted in a hyposensitive hypocotyl phenotype under continuous FR (cFR) light and a delayed flowering phenotype under long-day conditions, which suggests that FIP1 may exist in a complex to function in the regulation of Arabidopsis (Arabidopsis thaliana) development. In addition, FIP1 mRNA was down-regulated in the suppressor of phytochrome A-105 1 mutant and differentially expressed in constitutive photomorphogenic 1-4 (cop1-4) and cop1-5 mutants under cFR. Intriguingly, FIP1 expression was up-regulated in the fin219 mutant under all light conditions, except cFR. Furthermore, promoter activity assays revealed that FIP1 expression was light dependent, mainly associated with vascular tissues, and developmentally regulated. Subcellular localization studies revealed that the beta-glucuronidase-FIP1 fusion protein was localized in the nucleus and cytoplasm. Taken together, these data indicate that FIP1 may interact with FIN219 to regulate cell elongation and flowering in response to light.
引用
收藏
页码:1189 / 1202
页数:14
相关论文
共 56 条
[1]   Gradual shifts in sites of free-auxin production during leaf-primordium development and their role in vascular differentiation and leaf morphogenesis in Arabidopsis [J].
Aloni, R ;
Schwalm, K ;
Langhans, M ;
Ullrich, CI .
PLANTA, 2003, 216 (05) :841-853
[2]   LAF1, a MYB transcription activator for phytochrome A signaling [J].
Ballesteros, ML ;
Bolle, C ;
Lois, LM ;
Moore, JM ;
Vielle-Calzada, JP ;
Grossniklaus, U ;
Chua, NH .
GENES & DEVELOPMENT, 2001, 15 (19) :2613-2625
[3]   Constitutive photomorphogenesis 1 and multiple photoreceptors control degradation of phytochrome interacting factor 3, a transcription factor required for light signaling in Arabidopsis [J].
Bauer, D ;
Viczián, A ;
Kircher, S ;
Nobis, T ;
Nitschke, R ;
Kunkel, T ;
Panigrahi, KCS ;
Adám, É ;
Fejes, E ;
Schäfer, E ;
Nagy, F .
PLANT CELL, 2004, 16 (06) :1433-1445
[4]  
Bolle C, 2000, GENE DEV, V14, P1269
[5]   A possible role for NDPK2 in the regulation of auxin-mediated responses for plant growth and development [J].
Choi, G ;
Kim, JI ;
Hong, SW ;
Shin, B ;
Choi, G ;
Blakeslee, JJ ;
Murphy, AS ;
Seo, YW ;
Kim, K ;
Koh, EJ ;
Song, PS ;
Lee, H .
PLANT AND CELL PHYSIOLOGY, 2005, 46 (08) :1246-1254
[6]   Floral dip:: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana [J].
Clough, SJ ;
Bent, AF .
PLANT JOURNAL, 1998, 16 (06) :735-743
[7]   Phytochelatins and their roles in heavy metal detoxification [J].
Cobbett, CS .
PLANT PHYSIOLOGY, 2000, 123 (03) :825-832
[8]   FHY1: a phytochrome A-specific signal transducer [J].
Desnos, T ;
Puente, P ;
Whitelam, GC ;
Harberd, NP .
GENES & DEVELOPMENT, 2001, 15 (22) :2980-2990
[9]   EID1, an F-box protein involved in phytochrome A-specific light signaling [J].
Dieterle, M ;
Zhou, YC ;
Schäfer, E ;
Funk, M ;
Kretsch, T .
GENES & DEVELOPMENT, 2001, 15 (08) :939-944
[10]   Plant glutathione transferases [J].
Dixon, David P. ;
Lapthorn, Adrian ;
Edwards, Robert .
GENOME BIOLOGY, 2002, 3 (03)