Dynamic localization in quantum dots: Analytical theory

被引:52
作者
Basko, DM
Skvortsov, MA
Kravtsov, VE
机构
[1] Abdus Salam Int Ctr Theoret Phys, I-34100 Trieste, Italy
[2] LD Landau Theoret Phys Inst, Moscow 117940, Russia
关键词
D O I
10.1103/PhysRevLett.90.096801
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We analyze the response of a complex quantum-mechanical system (e.g., a quantum dot) to a time-dependent perturbation phi(t). Assuming the dot to be described by random-matrix theory for the Gaussian orthogonal ensemble, we find the quantum correction to the energy absorption rate as a function of the dephasing time t(Phi). If phi(t) is a sum of d harmonics with incommensurate frequencies, the correction behaves similarly to that for the conductivity deltasigma(d)(t(Phi)) in the d-dimensional Anderson model of the orthogonal symmetry class. For a generic periodic perturbation, the leading quantum correction is absent as in the systems of the unitary symmetry class, unless phi(-t+tau)=phi(t+tau) for some tau, which falls into the quasi-1D orthogonal universality class.
引用
收藏
页数:4
相关论文
共 25 条
[1]  
AKULIN VM, 1977, SOV PHYS JETP, V46, P1099
[2]   Field theory of the quantum kicked rotor [J].
Altland, A ;
Zirnbauer, MR .
PHYSICAL REVIEW LETTERS, 1996, 77 (22) :4536-4539
[3]   Wigner-Dyson statistics from the Keldysh σ-model [J].
Altland, A ;
Kamenev, A .
PHYSICAL REVIEW LETTERS, 2000, 85 (26) :5615-5618
[4]   ANDERSON TRANSITION IN A ONE-DIMENSIONAL SYSTEM WITH 3 INCOMMENSURATE FREQUENCIES [J].
CASATI, G ;
GUARNERI, I ;
SHEPELYANSKY, DL .
PHYSICAL REVIEW LETTERS, 1989, 62 (04) :345-348
[5]   SCALING PROPERTIES OF BAND RANDOM MATRICES [J].
CASATI, G ;
MOLINARI, L ;
IZRAILEV, F .
PHYSICAL REVIEW LETTERS, 1990, 64 (16) :1851-1854
[6]  
CASATI G, 1979, LECT NOTES PHYSICS, V93
[7]   QUANTUM CHAOS - LOCALIZATION VS ERGODICITY [J].
CHIRIKOV, BV ;
IZRAILEV, FM ;
SHEPELYANSKY, DL .
PHYSICA D, 1988, 33 (1-3) :77-88
[8]  
Efetov K., 1997, Supersymmetry in Disorder and Chaos
[9]   CHAOS, QUANTUM RECURRENCES, AND ANDERSON LOCALIZATION [J].
FISHMAN, S ;
GREMPEL, DR ;
PRANGE, RE .
PHYSICAL REVIEW LETTERS, 1982, 49 (08) :509-512
[10]   SCALING PROPERTIES OF LOCALIZATION IN RANDOM BAND MATRICES - A SIGMA-MODEL APPROACH [J].
FYODOROV, YV ;
MIRLIN, AD .
PHYSICAL REVIEW LETTERS, 1991, 67 (18) :2405-2409