A yellowish Ti1-xSyO2 photocatalyst exhibiting high activity in wide light spectrum range was prepared by acid catalyzed hydrolysis method. Photocatalytic activity was investigated through the photocatalytic degradation of phenol under UV, artificial visible (Vis) and solar light irradiation, respectively. XPS, DRS, XRD, FT-IR, SEM, and N-2 adsorption were used for catalyst characterization. The results showed that cationic S6+ was incorporated into TiO2 lattice and substitutes a part of Ti4+. Ti1-xSyO2 with optimum S-doping exhibited the highest activity in both Vis and UV regions. The new band-gap formed by doped-S could induce a second adsorption edge (450-550 nm) which could be excited by Vis irradiation and induce Vis activity. Under UV irradiation, the new formed band-energy could accept holes generated by bulk TiO2 and form a composite semiconductor structure, then improve hole-electron pairs separation. In addition, doped-S also benefited the dispersity of TiO2, increased S-BET and retarded phase transformation.