Symmetry or not?

被引:16
作者
Kawohl, B [1 ]
机构
[1] Univ Cologne, Inst Math, D-50923 Koln, Germany
关键词
D O I
10.1007/BF03025292
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
[No abstract available]
引用
收藏
页码:16 / 22
页数:7
相关论文
共 25 条
[1]  
ALIKAKOS ND, 1988, ANN I H POINCARE-AN, V5, P141
[2]  
[Anonymous], PITMAN RES NOTES MAT
[3]   UNIQUENESS AND CONTINUUM OF FOLIATED SOLUTIONS FOR A QUASI-LINEAR ELLIPTIC EQUATION WITH A NON-LIPSCHITZ NONLINEARITY [J].
BARLES, G ;
DIAZ, G ;
DIAZ, JI .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 1992, 17 (5-6) :1037-1050
[4]   POSITIVE SOLUTIONS OF NON-LINEAR ELLIPTIC-EQUATIONS INVOLVING CRITICAL SOBOLEV EXPONENTS [J].
BREZIS, H ;
NIRENBERG, L .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1983, 36 (04) :437-477
[5]   A symmetry problem in the calculus of variations [J].
Brock, F ;
Ferone, V ;
Kawohl, B .
CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 1996, 4 (06) :593-599
[6]  
BROCK F, 1996, UNPUB APPROACH SYMME
[7]  
BROCK F, 1996, UNPUB CONTINUOUS REA
[8]   MINIMUM PROBLEMS OVER SETS OF CONCAVE FUNCTIONS AND RELATED QUESTIONS [J].
BUTTAZZO, G ;
FERONE, V ;
KAWOHL, B .
MATHEMATISCHE NACHRICHTEN, 1995, 173 :71-89
[9]   A GRADIENT BOUND FOR ENTIRE SOLUTIONS OF QUASI-LINEAR EQUATIONS AND ITS CONSEQUENCES [J].
CAFFARELLI, L ;
GAROFALO, N ;
SEGALA, F .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1994, 47 (11) :1457-1473
[10]   A NON-LINEAR BOUNDARY-VALUE PROBLEM WITH MANY POSITIVE SOLUTIONS [J].
COFFMAN, CV .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1984, 54 (03) :429-437