Organization of HIV-1 capsid proteins on a lipid monolayer

被引:56
作者
Barklis, E
McDermott, J
Wilkens, S
Fuller, S
Thompson, D
机构
[1] Oregon Hlth Sci Univ, Vollum Inst, Portland, OR 97201 USA
[2] Oregon Hlth Sci Univ, Dept Microbiol, Portland, OR 97201 USA
[3] Univ Oregon, Inst Mol Biol, Eugene, OR 97403 USA
[4] European Mol Biol Lab, Struct Biol Programme, D-69012 Heidelberg, Germany
[5] Purdue Univ, Dept Chem, W Lafayette, IN 47907 USA
关键词
D O I
10.1074/jbc.273.13.7177
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
In an in vitro system that mimics the assembly of immature human immunodeficiency virus (HIV) particles, ordered arrays of HIV-1 capsid (CA) proteins encoded by the viral gag gene have been obtained by incubation of histidine-tagged capsid proteins (His-HIVCA) beneath lipid monolayers containing the nickel-chelating lipid, 1,2-di-O-hexadecyl-sn-glycero-3-(1'-2 "-hydroxy-3'-N-(5-amino-1-carboxypentyl)iminodiacetic acid)propyl ether. The membrane-bound His-HIVCA proteins formed small crystalline arrays of primitive (p1) unit cells with dimensions of a = 74.2 Angstrom, b = 126.2 Angstrom, gamma = 89.3 degrees. The image-analyzed two-dimensional projection of His-HIVCA assemblies shows a cage-like lattice, consisting of hexamer and trimer units, surrounding protein-free cage holes. The hexamer-coordinated cage holes of 26.3-Angstrom diameter are spaced at 74.2-Angstrom intervals: these distances, and the hexamer-trimer arrangement, are consistent with previous, lower resolution studies on immature HIV-1 virus particles produced in vivo. Additionally, HIV-1 matrix protein trimer unit structures align to the His-HIVCA trimer units such that residues previously shown to interact with the HIV-1 gp120/gp41 envelope protein complex are oriented toward the hexamer cage holes. Our results form a bridge between results from conventional methods for the analysis of HIV particle structure.
引用
收藏
页码:7177 / 7180
页数:4
相关论文
共 22 条
[1]   Structural analysis of membrane-bound retrovirus capsid proteins [J].
Barklis, E ;
McDermott, J ;
Wilkens, S ;
Schabtach, E ;
Schmid, MF ;
Fuller, S ;
Karanjia, S ;
Love, Z ;
Jones, R ;
Rui, YJ ;
Zhao, XM ;
Thompson, D .
EMBO JOURNAL, 1997, 16 (06) :1199-1213
[2]   SELF-ASSEMBLY IN-VITRO OF PURIFIED CA-NC PROTEINS FROM ROUS-SARCOMA VIRUS AND HUMAN-IMMUNODEFICIENCY-VIRUS TYPE-1 [J].
CAMPBELL, S ;
VOGT, VM .
JOURNAL OF VIROLOGY, 1995, 69 (10) :6487-6497
[3]   Core structure of gp41 from the HIV envelope glycoprotein [J].
Chan, DC ;
Fass, D ;
Berger, JM ;
Kim, PS .
CELL, 1997, 89 (02) :263-273
[4]   MRC image processing programs [J].
Crowther, RA ;
Henderson, R ;
Smith, JM .
JOURNAL OF STRUCTURAL BIOLOGY, 1996, 116 (01) :9-16
[5]  
Faecke Michael, 1993, Journal of Virology, V67, P4972
[6]   SPIDER and WEB: Processing and visualization of images in 3D electron microscopy and related fields [J].
Frank, J ;
Radermacher, M ;
Penczek, P ;
Zhu, J ;
Li, YH ;
Ladjadj, M ;
Leith, A .
JOURNAL OF STRUCTURAL BIOLOGY, 1996, 116 (01) :190-199
[7]   Cryo-electron microscopy reveals ordered domains in the immature HIV-1 particle [J].
Fuller, SD ;
Wilk, T ;
Gowen, BE ;
Krausslich, HG ;
Vogt, VM .
CURRENT BIOLOGY, 1997, 7 (10) :729-738
[8]   Crystal structure of human cyclophilin A bound to the amino-terminal domain of HIV-1 capsid [J].
Gamble, TR ;
Vajdos, FF ;
Yoo, SH ;
Worthylake, DK ;
Houseweart, M ;
Sundquist, WI ;
Hill, CP .
CELL, 1996, 87 (07) :1285-1294
[9]   Structure of the carboxyl-terminal dimerization domain of the HIV-1 capsid protein [J].
Gamble, TR ;
Yoo, SH ;
Vajdos, FF ;
vonSchwedler, UK ;
Worthylake, DK ;
Wang, H ;
McCutcheon, JP ;
Sundquist, WI ;
Hill, CP .
SCIENCE, 1997, 278 (5339) :849-853
[10]   ASSEMBLY AND MORPHOLOGY OF HIV - POTENTIAL EFFECT OF STRUCTURE ON VIRAL FUNCTION [J].
GELDERBLOM, HR .
AIDS, 1991, 5 (06) :617-638