On the global evolution problem in 2+1 gravity

被引:37
作者
Andersson, L [1 ]
Moncrief, V
Tromba, AJ
机构
[1] Royal Inst Technol, Dept Math, S-10044 Stockholm, Sweden
[2] Yale Univ, Dept Math, New Haven, CT 06520 USA
[3] Yale Univ, Dept Phys, New Haven, CT 06520 USA
[4] Univ Calif Santa Cruz, Dept Math, Santa Cruz, CA 95064 USA
关键词
Lorentzian manifolds; foliations;
D O I
10.1016/S0393-0440(97)87804-7
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Existence of global constant mean curvature (CMC) foliations of constant curvature 3-dimensional maximal globally hyperbolic Lorentzian manifolds, containing a constant mean curvature hypersurface with genus(Sigma) > 1, is proved. Constant curvature 3-dimensional Lorentzian manifolds can be viewed as solutions to the 2 + 1 vacuum Einstein equations with a cosmological constant. The proof is based on the reduction of the corresponding Hamiltonian system in CMC gauge to a time-dependent Hamiltonian system on the cotangent bundle of Teichmuller space. Estimates of the Dirichlet energy of the induced metric play an essential role in the proof.
引用
收藏
页码:191 / 205
页数:15
相关论文
共 5 条
[1]  
CHOI HOI, 1990, J DIFFER GEOM, V32, P775
[2]  
Lichnerowicz A., 1944, Journal de Mathematiques Pures et Appliquees, V23, P37
[3]  
MESS G, 1990, IHESM9028
[4]   REDUCTION OF THE EINSTEIN EQUATIONS IN 2+1 DIMENSIONS TO A HAMILTONIAN SYSTEM OVER TEICHMULLER SPACE [J].
MONCRIEF, V .
JOURNAL OF MATHEMATICAL PHYSICS, 1989, 30 (12) :2907-2914
[5]  
Tromba A. J, 1992, TEICHMULLER THEORY R