Rapid Dark Repression of 5-Aminolevulinic Acid Synthesis in Green Barley Leaves

被引:64
作者
Richter, Andreas [1 ]
Peter, Enrico [1 ]
Poers, Yvonne [2 ]
Lorenzen, Stephan [3 ]
Grimm, Bernhard [1 ]
Czarnecki, Olaf [1 ]
机构
[1] Humboldt Univ, Inst Biol, Dept Plant Physiol, D-10099 Berlin, Germany
[2] Humboldt Univ, Inst Biol, Dept Cell Biol, D-10099 Berlin, Germany
[3] Humboldt Univ, Inst Theoret Biol, D-10099 Berlin, Germany
关键词
Acifluorfen; 5-Aminolevulinic acid; Chlorophyll; Dark repression; FLU; Heme; Protochlorophyllide; tigrina d(12); DELTA-AMINOLEVULINIC-ACID; TETRAPYRROLE BIOSYNTHETIC-PATHWAY; TRANSFER-RNA REDUCTASE; CHLOROPHYLL BIOSYNTHESIS; PROTOPORPHYRINOGEN OXIDASE; MAGNESIUM CHELATASE; LIGHT; PROTOCHLOROPHYLLIDE; ACCUMULATION; HEME;
D O I
10.1093/pcp/pcq047
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
In photosynthetic organisms chlorophyll and heme biosynthesis is tightly regulated at various levels in response to environmental adaptation and plant development. The formation of 5-aminolevulinic acid (ALA) is the key regulatory step and provides adequate amounts of the common precursor molecule for the Mg and Fe branches of tetrapyrrole biosynthesis. Pathway control prevents accumulation of metabolic intermediates and avoids photo-oxidative damage. In angiosperms reduction of protochlorophyllide (Pchlide) to chlorophyllide is catalyzed by the light-dependent NADPH:Pchlide oxidoreductase (POR). Although a correlation between down-regulated ALA synthesis and accumulation of Pchlide in the dark was proposed a long time ago, the time-resolved mutual dependency has never been analyzed. Taking advantage of the high metabolic activity of young barley (Hordeum vulgare L.) seedlings, in planta ALA synthesis could be determined with high time-resolution. ALA formation declined immediately after transition from light to dark and correlated with an immediate accumulation of POR-bound Pchlide within the first 60min in darkness. The flu homologous barley mutant tigrina d(12) uncouples ALA synthesis from dark-suppression and continued to form ALA in darkness without a significant change in synthesis rate in this time interval. Similarly, inhibition of protoporphyrinogen IX oxidase by acifluorfen resulted in a delayed accumulation of Pchlide during the entire dark period and a weak repression of ALA synthesis in darkness. Moreover, it is demonstrated that dark repression of ALA formation relies rather on rapid post-translational regulation in response to accumulating Pchlide than on changes in nuclear gene expression.
引用
收藏
页码:670 / 681
页数:12
相关论文
共 62 条
[1]  
Beale Samuel I., 2006, V25, P147
[2]   Enzymes of chlorophyll biosynthesis [J].
Beale, SI .
PHOTOSYNTHESIS RESEARCH, 1999, 60 (01) :43-73
[3]   THE CIRCADIAN OSCILLATOR COORDINATES THE SYNTHESIS OF APOPROTEINS AND THEIR PIGMENTS DURING CHLOROPLAST DEVELOPMENT [J].
BEATOR, J ;
KLOPPSTECH, K .
PLANT PHYSIOLOGY, 1993, 103 (01) :191-196
[4]  
BECERRIL JM, 1992, PHYSIOL PLANTARUM, V86, P6
[5]   IDENTIFICATION OF 4 UNIVERSAL PROTOCHLOROPHYLLIDE FORMS IN DARK-GROWN LEAVES BY ANALYSES OF THE 77-K FLUORESCENCE EMISSION-SPECTRA [J].
BODDI, B ;
RYBERG, M ;
SUNDQVIST, C .
JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY, 1992, 12 (04) :389-401
[6]   ABOLITION OF LAG PHASE IN GREENING CUCUMBER COTYLEDONS BY EXOGENOUS DELTA-AMINOLEVULINIC-ACID [J].
CASTELFRANCO, PA ;
RICH, PM ;
BEALE, SI .
PLANT PHYSIOLOGY, 1974, 53 (04) :615-618
[7]   GENOMIC SEQUENCING [J].
CHURCH, GM ;
GILBERT, W .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA-BIOLOGICAL SCIENCES, 1984, 81 (07) :1991-1995
[8]   Green or red: what stops the traffic in the tetrapyrrole pathway? [J].
Cornah, JE ;
Terry, MJ ;
Smith, AG .
TRENDS IN PLANT SCIENCE, 2003, 8 (05) :224-230
[9]  
Dawson R.M. C., 1986, DATA BIOCH RES
[10]   COPPER-INDUCED DAMAGE TO THE PERMEABILITY BARRIER IN ROOTS OF SILENE-CUCUBALUS [J].
DEVOS, CHR ;
SCHAT, H ;
VOOIJS, R ;
ERNST, WHO .
JOURNAL OF PLANT PHYSIOLOGY, 1989, 135 (02) :164-169