Controlling and synchronizing chaotic Genesio system via nonlinear feedback control

被引:202
作者
Chen, MY [1 ]
Han, ZZ [1 ]
机构
[1] Shanghai Jiao Tong Univ, Dept Automat, Intelligent Engn Lab, Shanghai 200030, Peoples R China
关键词
D O I
10.1016/S0960-0779(02)00487-3
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, a new method to control and synchronize chaotic Genesio system is proposed. We can design a nonlinear feedback controller to make the controlled system be stabilized at origin and two Genesio systems be synchronized. The stability analysis of controlled system becomes simple Hurwitz stability analysis provided that a parameter is chosen suitably. Numerical simulations verify the effectiveness of this method. (C) 2003 Elsevier Science Ltd. All rights reserved.
引用
收藏
页码:709 / 716
页数:8
相关论文
共 15 条
[1]   SYNCHRONIZING CHAOTIC CIRCUITS [J].
CARROLL, TL ;
PECORA, LM .
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS, 1991, 38 (04) :453-456
[2]   On some controllability conditions for chaotic dynamics control [J].
Chen, GR .
CHAOS SOLITONS & FRACTALS, 1997, 8 (09) :1461-1470
[3]   HARMONIC-BALANCE METHODS FOR THE ANALYSIS OF CHAOTIC DYNAMICS IN NONLINEAR-SYSTEMS [J].
GENESIO, R ;
TESI, A .
AUTOMATICA, 1992, 28 (03) :531-548
[4]   Controlling chaotic behaviour for spin generator and Rossler dynamical systems with feedback control [J].
Hegazi, A ;
Agiza, HN ;
El-Dessoky, MM .
CHAOS SOLITONS & FRACTALS, 2001, 12 (04) :631-658
[5]   A new feedback control of a modified Chua's circuit system [J].
Hwang, CC ;
Chow, HY ;
Wang, YK .
PHYSICA D-NONLINEAR PHENOMENA, 1996, 92 (1-2) :95-100
[6]   Sliding mode control for a class of chaotic systems [J].
Konishi, K ;
Hirai, M ;
Kokame, H .
PHYSICS LETTERS A, 1998, 245 (06) :511-517
[7]   Adaptive synchronization of two Lorenz systems [J].
Liao, TL .
CHAOS SOLITONS & FRACTALS, 1998, 9 (09) :1555-1561
[8]   A linear feedback synchronization theorem for a class of chaotic systems [J].
Liu, F ;
Ren, Y ;
Shan, XM ;
Qiu, ZL .
CHAOS SOLITONS & FRACTALS, 2002, 13 (04) :723-730
[9]   CONTROLLING CHAOS [J].
OTT, E ;
GREBOGI, C ;
YORKE, JA .
PHYSICAL REVIEW LETTERS, 1990, 64 (11) :1196-1199
[10]   SYNCHRONIZATION IN CHAOTIC SYSTEMS [J].
PECORA, LM ;
CARROLL, TL .
PHYSICAL REVIEW LETTERS, 1990, 64 (08) :821-824