Age-Related Resistance of Nicotiana benthamiana Against Hemibiotrophic Pathogen Phytophthora infestans Requires Both Ethylene- and Salicylic Acid-Mediated Signaling Pathways

被引:102
作者
Shibata, Yusuke [1 ]
Kawakita, Kazuhito [1 ]
Takemoto, Daigo [1 ]
机构
[1] Nagoya Univ, Grad Sch Bioagr Sci, Plant Pathol Lab, Chikusa Ku, Nagoya, Aichi 4648601, Japan
基金
日本学术振兴会;
关键词
PHENYLALANINE AMMONIA-LYASE; SYSTEMIC ACQUIRED-RESISTANCE; LATE-BLIGHT RESISTANCE; CELL-DEATH; SOLANUM-BULBOCASTANUM; DEVELOPMENTAL CONTROL; ARABIDOPSIS-THALIANA; DISEASE RESISTANCE; NONHOST RESISTANCE; INCOMPATIBLE RACE;
D O I
10.1094/MPMI-23-9-1130
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Phytophthora infestans, the agent of late blight disease of potato, is a hemibiotrophic pathogen with biotrophic action during early infection and necrotrophic in the later stage of colonization. Mature Nicotiana benthamiana was resistant to P infestans, whereas relatively young plants were susceptible to this pathogen. Young plants became resistant following a pretreatment with acibenzolar-S-methyl, a functional analog of salicylic acid (SA), indicating that susceptibility of young plants is due to a lack of induction of SA signaling. Further analysis with virus-induced gene silencing indicated that NbICS1 and NbEIN2, the genes for SA biosynthesis and ethylene (ET) signaling, respectively, are required for the resistance of mature N. benthamiana against P. infestans. Furthermore, these genes are required for the production of reactive oxygen species (ROS) induced by treatment of the INF1 elicitor. In NbICS1-silenced plants, cell death induced by either INF1 or necrosis-inducing protein NPP1.1 was significantly accelerated. Expression of genes for phytoalexin (capsidiol) biosynthesis, NbEAS and NbEAH, were regulated by ET, and gene silencing of either of them compromised resistance of N. benthamiana to P. infestans. Together, these results suggest that resistance of N. benthamiana against hemibiotrophic P infestans requires both SA-regulated appropriate induction of cell death and ET-induced production of phytoalexin.
引用
收藏
页码:1130 / 1142
页数:13
相关论文
共 93 条
[1]   EIN2, a bifunctional transducer of ethylene and stress responses in Arabidopsis [J].
Alonso, JM ;
Hirayama, T ;
Roman, G ;
Nourizadeh, S ;
Ecker, JR .
SCIENCE, 1999, 284 (5423) :2148-2152
[2]   MAPK signaling regulates nitric oxide and NADPH oxidase-dependent oxidative bursts in Nicotiana benthamiana [J].
Asai, Shuta ;
Ohta, Kohji ;
Yoshioka, Hirofumi .
PLANT CELL, 2008, 20 (05) :1390-1406
[3]   CAPSIDIOL - ANTIFUNGAL COMPOUND PRODUCED IN NICOTIANA-TABACUM AND NICOTIANA-CLEVELANDII FOLLOWING INFECTION WITH TOBACCO NECROSIS VIRUS [J].
BAILEY, JA ;
BURDEN, RS ;
VINCENT, GG .
PHYTOCHEMISTRY, 1975, 14 (02) :597-597
[4]   The R1 gene for potato resistance to late blight (Phytophthora infestans) belongs to the leucine zipper/NBS/LRR class of plant resistance genes [J].
Ballvora, A ;
Ercolano, MR ;
Weiss, J ;
Meksem, K ;
Bormann, CA ;
Oberhagemann, P ;
Salamini, F ;
Gebhardt, C .
PLANT JOURNAL, 2002, 30 (03) :361-371
[5]   QUANTITATIVE RELATIONSHIP BETWEEN PHENYLALANINE AMMONIA-LYASE LEVELS AND PHENYLPROPANOID ACCUMULATION IN TRANSGENIC TOBACCO IDENTIFIES A RATE-DETERMINING STEP IN NATURAL PRODUCT SYNTHESIS [J].
BATE, NJ ;
ORR, J ;
NI, WT ;
MEROMI, A ;
NADLERHASSAR, T ;
DOERNER, PW ;
DIXON, RA ;
LAMB, CJ ;
ELKIND, Y .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1994, 91 (16) :7608-7612
[6]   Host-pathogen interactions between Phytophthora infestans and the Solanaceous hosts Calibrachoa x Hybridus, Petunia x hybrida, and Nicotiana benthamiana [J].
Becktell, MC ;
Smart, CA ;
Haney, CH ;
Fry, WE .
PLANT DISEASE, 2006, 90 (01) :24-32
[7]   From elicitins to lipid-transfer proteins:: a new insight in cell signalling involved in plant defence mechanisms [J].
Blein, JP ;
Coutos-Thévenot, P ;
Marion, D ;
Ponchet, M .
TRENDS IN PLANT SCIENCE, 2002, 7 (07) :293-296
[8]   The Arabidopsis NPR1 gene that controls systemic acquired resistance encodes a novel protein containing ankyrin repeats [J].
Cao, H ;
Glazebrook, J ;
Clarke, JD ;
Volko, S ;
Dong, XN .
CELL, 1997, 88 (01) :57-63
[9]   Salicylic acid production in response to biotic and abiotic stress depends on isochorismate in Nicotiana benthamiana [J].
Catinot, Jeremy ;
Buchala, Antony ;
Abou-Mansour, Eliane ;
Metraux, Jean-Pierre .
FEBS LETTERS, 2008, 582 (04) :473-478
[10]   Developmental control of Xa21-mediated disease resistance in rice [J].
Century, KS ;
Lagman, RA ;
Adkisson, M ;
Morlan, J ;
Tobias, R ;
Schwartz, K ;
Smith, A ;
Love, J ;
Ronald, PC ;
Whalen, MC .
PLANT JOURNAL, 1999, 20 (02) :231-236