Proteomic characterization of postmortem amyloid plaques isolated by laser capture microdissection

被引:234
作者
Lia, LJ
Cheng, DM
Wang, J
Duong, DM
Losik, TG
Gearing, M
Rees, HD
Lah, JJ
Levey, AI
Peng, JM [1 ]
机构
[1] Emory Univ, Sch Med, Dept Human Genet, Atlanta, GA 30322 USA
[2] Emory Univ, Sch Med, Ctr Neurodegenerat Dis, Atlanta, GA 30322 USA
[3] Emory Univ, Sch Med, Dept Pathol & Lab Med, Atlanta, GA 30322 USA
[4] Emory Univ, Sch Med, Dept Neurol, Atlanta, GA 30322 USA
关键词
D O I
10.1074/jbc.M403672200
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The presence of amyloid plaques in the brain is one of the pathological hallmarks of Alzheimer's disease (AD). We report here a comprehensive proteomic analysis of senile plaques from postmortem AD brain tissues. Senile plaques labeled with thioflavin-S were procured by laser capture microdissection, and their protein components were analyzed by liquid chromatography coupled with tandem mass spectrometry. We identified a total of 488 proteins coisolated with the plaques, and we found multiple phosphorylation sites on the neurofilament intermediate chain, implicating the complexity and diversity of cellular processes involved in the plaque formation. More significantly, we identified 26 proteins enriched in the plaques of two AD cases by quantitative comparison with surrounding non-plaque tissues. The localization of several proteins in the plaques was further confirmed by the approach of immunohistochemistry. In addition to previously identified plaque constituents, we discovered novel association of dynein heavy chain with the plaques in human postmortem brain and in a double transgenic AD mouse model, suggesting that neuronal transport may play a role in neuritic degeneration. Overall, our results revealed for the first time the sub-proteome of amyloid plaques that is important for further studies on disease biomarker identification and molecular mechanisms of AD pathogenesis.
引用
收藏
页码:37061 / 37068
页数:8
相关论文
共 74 条
[1]   IMMUNOCHEMICAL IDENTIFICATION OF THE SERINE PROTEASE INHIBITOR ALPHA-1-ANTICHYMOTRYPSIN IN THE BRAIN AMYLOID DEPOSITS OF ALZHEIMERS-DISEASE [J].
ABRAHAM, CR ;
SELKOE, DJ ;
POTTER, H .
CELL, 1988, 52 (04) :487-501
[2]   Mass spectrometry-based proteomics [J].
Aebersold, R ;
Mann, M .
NATURE, 2003, 422 (6928) :198-207
[3]   Hyperphosphorylated tan and neurofilament and cytoskeletal disruptions in mice overexpressing human p25, an activator of cdk5 [J].
Ahlijanian, MK ;
Barrezueta, NX ;
Williams, RD ;
Jakowski, A ;
Kowsz, KP ;
McCarthy, S ;
Coskran, T ;
Carlo, A ;
Seymour, PA ;
Burkhardt, JE ;
Nelson, RB ;
McNeish, JD .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2000, 97 (06) :2910-2915
[4]   Cytoplasmic dynein and dynactin are required for the transport of microtubules into the axon [J].
Ahmad, FJ ;
Echeverri, CJ ;
Vallee, RB ;
Baas, PW .
JOURNAL OF CELL BIOLOGY, 1998, 140 (02) :391-401
[5]   Inflammation and Alzheimer's disease [J].
Akiyama, H ;
Barger, S ;
Barnum, S ;
Bradt, B ;
Bauer, J ;
Cole, GM ;
Cooper, NR ;
Eikelenboom, P ;
Emmerling, M ;
Fiebich, BL ;
Finch, CE ;
Frautschy, S ;
Griffin, WST ;
Hampel, H ;
Hull, M ;
Landreth, G ;
Lue, LF ;
Mrak, R ;
Mackenzie, IR ;
McGeer, PL ;
O'Banion, MK ;
Pachter, J ;
Pasinetti, G ;
Plata-Salaman, C ;
Rogers, J ;
Rydel, R ;
Shen, Y ;
Streit, W ;
Strohmeyer, R ;
Tooyoma, I ;
Van Muiswinkel, FL ;
Veerhuis, R ;
Walker, D ;
Webster, S ;
Wegrzyniak, B ;
Wenk, G ;
Wyss-Coray, T .
NEUROBIOLOGY OF AGING, 2000, 21 (03) :383-421
[6]   Proteomic characterization of the human centrosome by protein correlation profiling [J].
Andersen, JS ;
Wilkinson, CJ ;
Mayor, T ;
Mortensen, P ;
Nigg, EA ;
Mann, M .
NATURE, 2003, 426 (6966) :570-574
[7]  
Andersen JS, 2002, CURR BIOL, V12, P1, DOI 10.1016/S0960-9822(01)00650-9
[8]   Senile plaque composition and posttranslational modification of amyloid-β peptide and associated proteins [J].
Atwood, CS ;
Martins, RN ;
Smith, MA ;
Perry, G .
PEPTIDES, 2002, 23 (07) :1343-1350
[9]   A proteomics strategy to elucidate functional protein-protein interactions applied to EGF signaling [J].
Blagoev, B ;
Kratchmarova, I ;
Ong, SE ;
Nielsen, M ;
Foster, LJ ;
Mann, M .
NATURE BIOTECHNOLOGY, 2003, 21 (03) :315-318
[10]   Brain metabolism and brain disease: Is metabolic deficiency the proximate cause of Alzheimer dementia? [J].
Blass, JP .
JOURNAL OF NEUROSCIENCE RESEARCH, 2001, 66 (05) :851-856