Input-output modeling of nonlinear systems with time-varying linear models

被引:33
作者
Chowdhury, FN [1 ]
机构
[1] Univ Louisiana Lafayette, Dept EECE, Lafayette, LA 70504 USA
基金
美国国家科学基金会;
关键词
ARMAX model; input-output modeling; nonlinear systems; on-line; random walk Kalman filter; time domain;
D O I
10.1109/9.867047
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Time-varying ARMA (AutoRegressive Moving Average) and ARMAX (AutoRegressive Moving Average with Exogenous Inputs) models are proposed fur input-output modeling of nonlinear deterministic and stochastic systems. The coefficients of these models are estimated by a Random Walk Kalman Filter (RWKF). This method requires no prior assumption on the nature of the model coefficients, and is suitable for real-time implementation since no off-line training is needed. A simulation example illustrates the method. Goodness of performance is judged by the quality of the residuals, histograms, autocorrelation functions and the Kolmogorov-Smirnoff test.
引用
收藏
页码:1355 / 1358
页数:4
相关论文
共 16 条
[1]  
ABRAHAM B, 1983, STAT METHODS FORECAS, P364
[2]  
[Anonymous], 1992, Handbook of Intelligent Control
[3]  
Box G, 1976, TIMES SERIES ANAL FO
[4]  
Chowdhury F., 1998, Proceedings of the 1998 IEEE International Conference on Control Applications (Cat. No.98CH36104), P283, DOI 10.1109/CCA.1998.728425
[5]  
GELB A, 1974, APPL OPTIMAL ESTIMAT, P348
[6]  
GOODWIN G, 1984, ADAPTIVE FILTERING P, P262
[7]  
KITAGAWA G, 1996, LECT NOTES STAT, P147
[8]   INPUT OUTPUT PARAMETRIC MODELS FOR NON-LINEAR SYSTEMS .2. STOCHASTIC NON-LINEAR SYSTEMS [J].
LEONTARITIS, IJ ;
BILLINGS, SA .
INTERNATIONAL JOURNAL OF CONTROL, 1985, 41 (02) :329-344
[9]  
Mosca E., 1995, OPTIMAL PREDICTIVE A
[10]  
MRAD RB, 1998, SIGNAL PROCESS, V65, P21