A local polynomial jump-detection algorithm in nonparametric regression

被引:52
作者
Qiu, PH [1 ]
Yandell, B
机构
[1] Ohio State Univ, Biostat Program, Columbus, OH 43210 USA
[2] Univ Wisconsin, Dept Stat, Madison, WI 53706 USA
关键词
edge detection; image processing; jump-detection algorithm; least squares line; modification procedure; nonparametric jump regression model; threshold value;
D O I
10.2307/1270648
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We suggest a one-dimensional jump-detection algorithm based on local polynomial fitting for jumps in regression functions (zero-order jumps) or jumps in derivatives (first-order or higher-order jumps), If jumps exist in the mth-order derivative of the underlying regression function, then an (m+1)-order polynomial is fitted in a neighborhood of each design point. We then characterize the jump information in the coefficients of the highest-order terms of the fitted polynomials and suggest an algorithm for jump detection. This method is introduced briefly for the general setup and then presented in detail for zero-order and first-order jumps. Several simulation examples are discussed. We apply this method to the Bombay (India) sea-level pressure data.
引用
收藏
页码:141 / 152
页数:12
相关论文
共 24 条
[1]   BAYESIAN COMPUTATION AND STOCHASTIC-SYSTEMS [J].
BESAG, J ;
GREEN, P ;
HIGDON, D ;
MENGERSEN, K .
STATISTICAL SCIENCE, 1995, 10 (01) :3-41
[2]  
Eubank RL, 1994, INST MATH S, V23, P130, DOI 10.1214/lnms/1215463119
[3]  
Gonzalez R.C., 1992, DIGITAL IMAGE PROCES
[4]   EDGE-PRESERVING AND PEAK-PRESERVING SMOOTHING [J].
HALL, P ;
TITTERINGTON, DM .
TECHNOMETRICS, 1992, 34 (04) :429-440
[5]  
Hardle W., 1991, Smoothing Techniques, DOI DOI 10.1007/978-1-4612-4432-5
[6]   GENERALIZED ADDITIVE-MODELS - SOME APPLICATIONS [J].
HASTIE, T ;
TIBSHIRANI, R .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1987, 82 (398) :371-386
[7]  
Loader CR, 1996, ANN STAT, V24, P1667
[8]   SMOOTHING WITH SPLIT LINEAR FITS [J].
MCDONALD, JA ;
OWEN, AB .
TECHNOMETRICS, 1986, 28 (03) :195-208
[9]   CHANGE-POINTS IN NONPARAMETRIC REGRESSION-ANALYSIS [J].
MULLER, HG .
ANNALS OF STATISTICS, 1992, 20 (02) :737-761
[10]  
QIU P, 1996, PATTERN RECOGN, V17, P849